The quantitative nature of complex financial transactions makes them a fascinating subject area for mathematicians of all types. This book gives an insight into financial engineering while building on introductory probability courses by detailing one of the most fascinating applications of the subject.
An introduction to many mathematical topics applicable to quantitative finance that teaches how to “think in mathematics” rather than simply do mathematics by rote. This text offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems. It emphasizes the thought process and mathematical approach taken to develop each result instead of the memorization of formulas to be applied (or misapplied) automatically. The objective is to provide a deep level of understanding of the relevant mathematical theory and tools that can then be effectively used in practice, to teach students how to “think in mathematics” rather than simply to do mathematics by rote. Each chapter covers an area of mathematics such as mathematical logic, Euclidean and other spaces, set theory and topology, sequences and series, probability theory, and calculus, in each case presenting only material that is most important and relevant for quantitative finance. Each chapter includes finance applications that demonstrate the relevance of the material presented. Problem sets are offered on both the mathematical theory and the finance applications sections of each chapter. The logical organization of the book and the judicious selection of topics make the text customizable for a number of courses. The development is self-contained and carefully explained to support disciplined independent study as well. A solutions manual for students provides solutions to the book's Practice Exercises; an instructor's manual offers solutions to the Assignment Exercises as well as other materials.
Teach Your Students How to Become Successful Working Quants Quantitative Finance: A Simulation-Based Introduction Using Excel provides an introduction to financial mathematics for students in applied mathematics, financial engineering, actuarial science, and business administration. The text not only enables students to practice with the basic techniques of financial mathematics, but it also helps them gain significant intuition about what the techniques mean, how they work, and what happens when they stop working. After introducing risk, return, decision making under uncertainty, and traditional discounted cash flow project analysis, the book covers mortgages, bonds, and annuities using a blend of Excel simulation and difference equation or algebraic formalism. It then looks at how interest rate markets work and how to model bond prices before addressing mean variance portfolio optimization, the capital asset pricing model, options, and value at risk (VaR). The author next focuses on binomial model tools for pricing options and the analysis of discrete random walks. He also introduces stochastic calculus in a nonrigorous way and explains how to simulate geometric Brownian motion. The text proceeds to thoroughly discuss options pricing, mostly in continuous time. It concludes with chapters on stochastic models of the yield curve and incomplete markets using simple discrete models. Accessible to students with a relatively modest level of mathematical background, this book will guide your students in becoming successful quants. It uses both hand calculations and Excel spreadsheets to analyze plenty of examples from simple bond portfolios. The spreadsheets are available on the book’s CRC Press web page.
This book is a tutorial guide for new users that aims to help you understand the basics of and become accomplished with the use of R for quantitative finance.If you are looking to use R to solve problems in quantitative finance, then this book is for you. A basic knowledge of financial theory is assumed, but familiarity with R is not required. With a focus on using R to solve a wide range of issues, this book provides useful content for both the R beginner and more experience users.
Although there are several publications on similar subjects, this book mainly focuses on pricing of options and bridges the gap between Mathematical Finance and Numerical Methodologies. The author collects the key contributions of several monographs and selected literature, values and displays their importance, and composes them here to create a work which has its own characteristics in content and style.This invaluable book provides working Matlab codes not only to implement the algorithms presented in the text, but also to help readers code their own pricing algorithms in their preferred programming languages. Availability of the codes under an Internet site is also offered by the author.Not only does this book serve as a textbook in related undergraduate or graduate courses, but it can also be used by those who wish to implement or learn pricing algorithms by themselves. The basic methods of option pricing are presented in a self-contained and unified manner, and will hopefully help readers improve their mathematical and computational backgrounds for more advanced topics.Errata(s)Errata
In today's world, we are increasingly exposed to the words 'machine learning' (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authorsFeatured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!
This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire textbook is appropriate for a single year-long course on introductory mathematical finance. The self-contained design of the text allows for instructor flexibility in topics courses and those focusing on financial derivatives. Moreover, the text is useful for mathematicians, physicists, and engineers who want to learn finance via an approach that builds their financial intuition and is explicit about model building, as well as business school students who want a treatment of finance that is deeper but not overly theoretical.
An accessible, thorough introduction to quantitative finance Does the complex world of quantitative finance make you quiver?You're not alone! It's a tough subject for even high-levelfinancial gurus to grasp, but Quantitative Finance ForDummies offers plain-English guidance on making sense ofapplying mathematics to investing decisions. With this completeguide, you'll gain a solid understanding of futures, options andrisk, and get up-to-speed on the most popular equations, methods,formulas and models (such as the Black-Scholes model) that areapplied in quantitative finance. Also known as mathematical finance, quantitative finance is thefield of mathematics applied to financial markets. It's a highlytechnical discipline—but almost all investment companies andhedge funds use quantitative methods. This fun and friendly guidebreaks the subject of quantitative finance down to easilydigestible parts, making it approachable for personal investors andfinance students alike. With the help of Quantitative FinanceFor Dummies, you'll learn the mathematical skills necessary forsuccess with quantitative finance, the most up-to-date portfolioand risk management applications and everything you need to knowabout basic derivatives pricing. Covers the core models, formulas and methods used inquantitative finance Includes examples and brief exercises to help augment yourunderstanding of QF Provides an easy-to-follow introduction to the complex world ofquantitative finance Explains how QF methods are used to define the current marketvalue of a derivative security Whether you're an aspiring quant or a top-tier personalinvestor, Quantitative Finance For Dummies is your go-toguide for coming to grips with QF/risk management.