Introduction to Probability Theory and Statistical Inference
Author: Harold J. Larson
Publisher:
Published: 1969
Total Pages: 387
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Harold J. Larson
Publisher:
Published: 1969
Total Pages: 387
ISBN-13:
DOWNLOAD EBOOKAuthor: George G. Roussas
Publisher: Academic Press
Published: 2014-10-21
Total Pages: 624
ISBN-13: 0128004371
DOWNLOAD EBOOKAn Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. - Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities - Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding - A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines - Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions - Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual
Author: Aris Spanos
Publisher: Cambridge University Press
Published: 2019-09-19
Total Pages: 787
ISBN-13: 1107185149
DOWNLOAD EBOOKThis empirical research methods course enables informed implementation of statistical procedures, giving rise to trustworthy evidence.
Author: George G. Roussas
Publisher: Academic Press
Published: 2013-11-27
Total Pages: 547
ISBN-13: 0128001984
DOWNLOAD EBOOKIntroduction to Probability, Second Edition, discusses probability theory in a mathematically rigorous, yet accessible way. This one-semester basic probability textbook explains important concepts of probability while providing useful exercises and examples of real world applications for students to consider. This edition demonstrates the applicability of probability to many human activities with examples and illustrations. After introducing fundamental probability concepts, the book proceeds to topics including conditional probability and independence; numerical characteristics of a random variable; special distributions; joint probability density function of two random variables and related quantities; joint moment generating function, covariance and correlation coefficient of two random variables; transformation of random variables; the Weak Law of Large Numbers; the Central Limit Theorem; and statistical inference. Each section provides relevant proofs, followed by exercises and useful hints. Answers to even-numbered exercises are given and detailed answers to all exercises are available to instructors on the book companion site. This book will be of interest to upper level undergraduate students and graduate level students in statistics, mathematics, engineering, computer science, operations research, actuarial science, biological sciences, economics, physics, and some of the social sciences. - Demonstrates the applicability of probability to many human activities with examples and illustrations - Discusses probability theory in a mathematically rigorous, yet accessible way - Each section provides relevant proofs, and is followed by exercises and useful hints - Answers to even-numbered exercises are provided and detailed answers to all exercises are available to instructors on the book companion site
Author: George Casella
Publisher: CRC Press
Published: 2024-05-23
Total Pages: 1746
ISBN-13: 1040024025
DOWNLOAD EBOOKThis classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
Author: Miltiadis C. Mavrakakis
Publisher: CRC Press
Published: 2021-03-28
Total Pages: 444
ISBN-13: 131536204X
DOWNLOAD EBOOKProbability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.
Author: James H. Stapleton
Publisher: John Wiley & Sons
Published: 2007-12-14
Total Pages: 466
ISBN-13: 0470183403
DOWNLOAD EBOOKThis concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Author: Jack C. Kiefer
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 342
ISBN-13: 146139578X
DOWNLOAD EBOOKThis book is based upon lecture notes developed by Jack Kiefer for a course in statistical inference he taught at Cornell University. The notes were distributed to the class in lieu of a textbook, and the problems were used for homework assignments. Relying only on modest prerequisites of probability theory and cal culus, Kiefer's approach to a first course in statistics is to present the central ideas of the modem mathematical theory with a minimum of fuss and formality. He is able to do this by using a rich mixture of examples, pictures, and math ematical derivations to complement a clear and logical discussion of the important ideas in plain English. The straightforwardness of Kiefer's presentation is remarkable in view of the sophistication and depth of his examination of the major theme: How should an intelligent person formulate a statistical problem and choose a statistical procedure to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that one should try to assess the consequences of a statistical choice in some quan titative (frequentist) formulation and ought to choose a course of action that is verifiably optimal (or nearly so) without regard to the perceived "attractiveness" of certain dogmas and methods.
Author: Vijay K. Rohatgi
Publisher: John Wiley & Sons
Published: 2015-09-01
Total Pages: 722
ISBN-13: 1118799658
DOWNLOAD EBOOKA well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.
Author: Hannelore Liero
Publisher: CRC Press
Published: 2016-04-19
Total Pages: 280
ISBN-13: 1466503203
DOWNLOAD EBOOKBased on the authors' lecture notes, this text presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Unlike related textbooks, it combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models. Suitable for a second semester undergraduate course on statistical inference, the text offers proofs to support the mathematics and does not require any use of measure theory. It illustrates core concepts using cartoons and provides solutions to all examples and problems.