A Plithogenic Logical proposition P is a proposition that is characterized by many degrees of truth-values with respect to many corresponding attribute-values (or random variables) that characterize P. Each degree of truth-value may be classical, fuzzy, intuitionistic fuzzy, neutrosophic, or other fuzzy extension type logic. At the end, a cumulative truth of P is computed.
In this paper we present for the first time the concept of symbolic plithogenic random variables and study its properties including expected value and variance. We build the plithogenic formal form of two important distributions that are exponential and uniform distributions. We find its probability density function and cumulative distribution function in its plithogenic form. We also derived its expected values and variance and the formulas of its random numbers generating. We finally present the fundamental form of plithogenic probability density and cumulative distribution functions. All the theorems were proved depending on algebraic approach using isomorphisms. This paper can be considered the base of symbolic plithogenic probability theory.
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.
This tenth volume of Collected Papers includes 86 papers in English and Spanish languages comprising 972 pages, written between 2014-2022 by the author alone or in collaboration with the following 105 co-authors (alphabetically ordered) from 26 countries: Abu Sufian, Ali Hassan, Ali Safaa Sadiq, Anirudha Ghosh, Assia Bakali, Atiqe Ur Rahman, Laura Bogdan, Willem K.M. Brauers, Erick González Caballero, Fausto Cavallaro, Gavrilă Calefariu, T. Chalapathi, Victor Christianto, Mihaela Colhon, Sergiu Boris Cononovici, Mamoni Dhar, Irfan Deli, Rebeca Escobar-Jara, Alexandru Gal, N. Gandotra, Sudipta Gayen, Vassilis C. Gerogiannis, Noel Batista Hernández, Hongnian Yu, Hongbo Wang, Mihaiela Iliescu, F. Nirmala Irudayam, Sripati Jha, Darjan Karabašević, T. Katican, Bakhtawar Ali Khan, Hina Khan, Volodymyr Krasnoholovets, R. Kiran Kumar, Manoranjan Kumar Singh, Ranjan Kumar, M. Lathamaheswari, Yasar Mahmood, Nivetha Martin, Adrian Mărgean, Octavian Melinte, Mingcong Deng, Marcel Migdalovici, Monika Moga, Sana Moin, Mohamed Abdel-Basset, Mohamed Elhoseny, Rehab Mohamed, Mohamed Talea, Kalyan Mondal, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Ihsan, Muhammad Naveed Jafar, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Mujahid Abbas, Mumtaz Ali, Radu I. Munteanu, Ghulam Murtaza, Munazza Naz, Tahsin Oner, Gabrijela Popović, Surapati Pramanik, R. Priya, S.P. Priyadharshini, Midha Qayyum, Quang-Thinh Bui, Shazia Rana, Akbara Rezaei, Jesús Estupiñán Ricardo, Rıdvan Sahin, Saeeda Mirvakili, Said Broumi, A. A. Salama, Flavius Aurelian Sârbu, Ganeshsree Selvachandran, Javid Shabbir, Shio Gai Quek, Son Hoang Le, Florentin Smarandache, Dragiša Stanujkić, S. Sudha, Taha Yasin Ozturk, Zaigham Tahir, The Houw Iong, Ayse Topal, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Rizha Vitania, Luige Vlădăreanu, Victor Vlădăreanu, Ștefan Vlăduțescu, J. Vimala, Dan Valeriu Voinea, Adem Yolcu, Yongfei Feng, Abd El-Nasser H. Zaied, Edmundas Kazimieras Zavadskas.
In this paper we exemplify the types of Plithogenic Probability and respectively Plithogenic Statistics. Several applications are given. The Plithogenic Probability of an event to occur is composed from the chances that the event occurs with respect to all random variables (parameters) that determine it. Each such a variable is described by a Probability Distribution (Density) Function, which may be a classical, (T,I,F)-neutrosophic, I-neutrosophic, (T,F)-intuitionistic fuzzy, (T,N,F)-picture fuzzy, (T,N,F)-spherical fuzzy, or (other fuzzy extension) distribution function. The Plithogenic Probability is a generalization of the classical MultiVariate Probability. The analysis of the events described by the plithogenic probability is the Plithogenic Statistics.
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.
In this volume, we present a set of research that was published in cooperation with a number of researchers and those interested in keeping pace with the great scientific development that our contemporary world is witnessing, and one of its products was neutrosophic science, which was founded by the American scientist and mathematical philosopher Florentin Smarandache in 1995. Through it, we present a new vision for some research methods. Operations research to the concepts of this science.
The newly introduced theories, proposed as extensions of the fuzzy theory, such as the Neutrosophic, Pythagorean, Spherical, Picture, Cubic theories, and their numerous hybrid forms, are criticized by the authors of [1]. In this paper we respond to their critics with respect to the neutrosophic theories and show that the DST, that they want to replace the A-IFS with, has many flaws. Their misunderstanding, with respect to the partial and total independence of the neutrosophic components, is that in the framework of the neutrosophic theories we deal with a MultiVariate Truth-Value (truth upon many independent random variables) as in our real-life world, not with a UniVariate Truth-Value (truth upon only one random variable) as they believe. About the membership degrees outside of the interval [0, 1], which are now in the arXiv and HAL mainstream, it is normal that somebody who over-works (works overtime) to have an over-membership (i.e., membership degree above 1) to be distinguished from those who do not work overtime (whose membership degree is between 0 and 1). And, similarly, a negative employee (that who does only damages to the company) to have a negative membership (i.e., membership degree below 0) in order to distinguish him from the positive employees (those whose membership degree is above 0). There are elementary practical applications in this paper that allow us to think out of box (in this case the box is the interval [0, 1]).
In this eighth book of scilogs collected from my nest of ideas, one may find new and old questions and solutions, – in email messages to research colleagues, or replies, and personal notes handwritten on the planes to, and from international conferences, about all kind of topics, centered mostly on Paradoxism and Neutrosophy. Exchanging ideas with: Robert Neil Boyd, Joseph Brenner, Ahmed Cevik, Victor Christianto, Adrian Curaj, Jean Dezert, Andrei-Lucian Drăgoi, Ervin Goldfain, Young Bae Jun, Yale Landsberg, Radu Munteanu, Paul Piștea, Viorel Roman, Ridvan Sahin, Said Broumi, Selcuk Topal, Eric W. Weisstein, Xiaohing Zhang.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. In this issue: On Neutrosophic Crisp Sets and Neutrosophic Crisp Mathematical Morphology, New Results on Pythagorean Neutrosophic Open Sets in Pythagorean Neutrosophic Topological Spaces, Comparative Mathematical Model for Predicting of Financial Loans Default using Altman Z-Score and Neutrosophic AHP Methods.