Introduction to Photon Science and Technology

Introduction to Photon Science and Technology

Author: David L. Andrews

Publisher:

Published: 2018

Total Pages: 124

ISBN-13: 9781510621954

DOWNLOAD EBOOK

In modern optics, the photon concept is indispensable for an ever-increasing range of applications, including many that are now prominent in twenty-first-century technology. To fully appreciate these applications, it is essential to understand the quantum principles and the mechanisms involved. This book, written by two widely published experts in the area, aims to provide a sound and up-to-date description of the theory and applications of photon science. It concisely explains substantial theory with a light touch, and the text is illustrated with original color figures.


An Introduction to Quantum Optics

An Introduction to Quantum Optics

Author: Yanhua Shih

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 470

ISBN-13: 042989306X

DOWNLOAD EBOOK

Authored by a highly regarded international researcher and pioneer in the field, An Introduction to Quantum Optics: Photon and Biphoton Physics is a straightforward overview of basic principles and experimental evidence for the quantum theory of light. This book introduces and analyzes some of the most exciting experimental research to date in the field of quantum optics and quantum information, helping readers understand the revolutionary changes occurring in optical science. Paints a picture of light in terms of general quantum interference, to reflect the physical truth behind all optical observations Unlike most traditional books on the subject, this one introduces fundamental classical and quantum concepts and measurement techniques naturally and gradually as it explores the process of analyzing typical experimental observations. Separating itself from other books with this uncommon focus on the experimental part of analysis, this volume: Provides a general overview of the optical coherence of light without quantization Introduces concepts and tools of field quantization and quantum optics based on the principles and rules of quantum mechanics Analyzes similarities and differences between classical and quantum coherence Concentrates on key research topics in quantum optics Explains photon and biphoton physics by examining the devices and experimental procedures used to test theories This book is basic enough for students, but it also covers a broad range of higher-level concepts that will benefit scientists and other professionals seeking to enhance their understanding of practical and theoretical aspects and new experimental methods of measurement. This material summarizes exciting developments and observations and then helps readers of all levels apply presented concepts and tools to summarize, analyze, and resolve quantum optical problems in their own work. It is a great aid to improve methods of discovering new physics and better understand and apply nontraditional concepts and interpretations in both new and historical experimental discoveries.


Single-Photon Generation and Detection

Single-Photon Generation and Detection

Author:

Publisher: Academic Press

Published: 2013-11-29

Total Pages: 593

ISBN-13: 0123876966

DOWNLOAD EBOOK

Single-photon generation and detection is at the forefront of modern optical physics research. This book is intended to provide a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared. The use of single photons, produced on demand with well-defined quantum properties, offers an unprecedented set of capabilities that are central to the new area of quantum information and are of revolutionary importance in areas that range from the traditional, such as high sensitivity detection for astronomy, remote sensing, and medical diagnostics, to the exotic, such as secretive surveillance and very long communication links for data transmission on interplanetary missions. The goal of this volume is to provide researchers with a comprehensive overview of the technology and techniques that are available to enable them to better design an experimental plan for its intended purpose. The book will be broken into chapters focused specifically on the development and capabilities of the available detectors and sources to allow a comparative understanding to be developed by the reader along with and idea of how the field is progressing and what can be expected in the near future. Along with this technology, we will include chapters devoted to the applications of this technology, which is in fact much of the driver for its development. This is set to become the go-to reference for this field. - Covers all the basic aspects needed to perform single-photon experiments and serves as the first reference to any newcomer who would like to produce an experimental design that incorporates the latest techniques - Provides a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared, thus giving broad background that should enable newcomers to the field to make rapid progress in gaining proficiency - Written by leading experts in the field, among which, the leading Editor is recognized as having laid down the roadmap, thus providing the reader with an authenticated and reliable source


Quantum Physics

Quantum Physics

Author: A.I Lvovsky

Publisher: Springer

Published: 2018-05-12

Total Pages: 318

ISBN-13: 3662565846

DOWNLOAD EBOOK

This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence – concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. The book uses a mathematically simple physical system – photon polarization – as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality. The author adopts a Socratic pedagogy: The student is guided to develop the machinery of quantum physics independently by solving sets of carefully chosen problems. Detailed solutions are provided.


Vision Science

Vision Science

Author: Stephen E. Palmer

Publisher: CUP Archive

Published: 1999-04-14

Total Pages: 844

ISBN-13: 9780262161831

DOWNLOAD EBOOK

This textbook on vision reflects the integrated computational approach of modern research scientists, combining psychological, computational and neuroscientific perspectives.


Photon Creation – Annihilation: Continuum Electromagnetic Theory

Photon Creation – Annihilation: Continuum Electromagnetic Theory

Author: Dale M Grimes

Publisher: World Scientific

Published: 2012-02-10

Total Pages: 432

ISBN-13: 9814452955

DOWNLOAD EBOOK

This book provides a classical physics-based explanation of quantum physics, including a full description of photon creation and annihilation, and successful working models of both photons and electrons. Classical field theory, known to fully describe macroscopic scale events, is shown to fully describe atomic scale events, including photon emission and annihilation. As such the book provides a ‘top-down’ unification of electromagnetic and quantum theories.


Getting Started with the Photon

Getting Started with the Photon

Author: Simon Monk

Publisher: Maker Media, Inc.

Published: 2015-05-14

Total Pages: 201

ISBN-13: 1457186977

DOWNLOAD EBOOK

The Photon is an open source, inexpensive, programmable, WiFi-enabled module for building connected projects and prototypes. Powered by an ARM Cortex-M3 microcontroller and a Broadcom WiFi chip, the Photon is just as happy plugged into a hobbyist's breadboard as it is into a product rolling off of an assembly line. While the Photon--and its accompanying cloud platform--is designed as a ready-to-go foundation for product developers and manufacturers, it's great for Maker projects, as you'll see in this book. You'll learn how to get started with the free development tools, deploy your sketches over WiFi, and build electronic projects that take advantage of the Photon's processing power, cloud platform, and input/output pins. What's more, the Photon is backward-compatible with its predecessor, the Spark Core.


Progress in Photon Science

Progress in Photon Science

Author: Kaoru Yamanouchi

Publisher: Springer

Published: 2019-01-23

Total Pages: 521

ISBN-13: 303005974X

DOWNLOAD EBOOK

This second volume of “Progress in Photon Science – Recent Advances” presents the latest achievements made by world-leading researchers in Russia and Japan. Thanks to recent advances in light source technologies; detection techniques for photons, electrons, and charged particles; and imaging technologies, the frontiers of photon science are now being expanding rapidly. Readers will be introduced to the latest research efforts in this rapidly growing research field through topics covering bioimaging and biological photochemistry, atomic and molecular phenomena in laser fields, laser–plasma interaction, advanced spectroscopy, electron scattering in laser fields, photochemistry on novel materials, solid-state spectroscopy, photoexcitation dynamics of nanostructures and clusters, and light propagation.


Reviews Of Accelerator Science And Technology - Volume 3: Accelerators As Photon Sources

Reviews Of Accelerator Science And Technology - Volume 3: Accelerators As Photon Sources

Author: Alexander Wu Chao

Publisher: World Scientific

Published: 2011-01-20

Total Pages: 299

ISBN-13: 9814462020

DOWNLOAD EBOOK

Over the last half century we have witnessed tremendous progress in the production of high-quality photons by electrons in accelerators. This dramatic evolution has seen four generations of accelerators as photon sources. The 1st generation used the electron storage rings built primarily for high-energy physics experiments, and the synchrotron radiation from the bending magnets was used parasitically. The 2nd generation involved rings dedicated to synchrotron radiation applications, with the radiation again from the bending magnets. The 3rd generation, currently the workhorse of these photon sources, is dedicated advanced storage rings that employ not only bending magnets but also insertion devices (wigglers and undulators) as the source of the radiation. The 4th generation, which is now entering operation, is photon sources based on the free electron laser (FEL), an invention made in the early 1970s.Each generation yielded growths in brightness and time resolution that were unimaginable just a few years earlier. In particular, the progression from the 3rd to 4th generation is a true revolution; the peak brilliance of coherent soft and hard x-rays has increased by 7-10 orders of magnitude, and the image resolution has reached the angstrom (1 Å = 10-10 meters) and femto-second (1 fs = 10-15 second) scales. These impressive capabilities have fostered fundamental scientific advances and led to an explosion of numerous possibilities in many important research areas including material science, chemistry, molecular biology and the life sciences. Even more remarkably, this field of photon source invention and development shows no signs of slowing down. Studies have already been started on the next generation of x-ray sources, which would have a time resolution in the atto-second (1 as = 10-18 second) regime, comparable to the time of electron motion inside atoms. It can be fully expected that these photon sources will stand out among the most powerful future science research tools. The physics community as well as the entire scientific community will hear of many pioneering and groundbreaking research results using these sources in the coming years.This volume contains fifteen articles, all written by leading scientists in their respective fields. It is aimed at the designers, builders and users of accelerator-based photon sources as well as general audience who are interested in this topic.