Practical and up-to-date, it incorporates some theoretical background material necessary to understand vibrational spectroscopy principles in addition to computational methods, instrumental aspects, novel developments and a number of detailed examples for vibrational spectra interpretations. Features a chapter on biological applications of vibrational spectroscopy and one devoted to a new branch of vibrational spectroscopy carried out with circularly polarized light.
Modern Vibrational Spectroscopy and Micro-Spectroscopy: Theory, Instrumentation and Biomedical Applications unites the theory and background of conventional vibrational spectroscopy with the principles of microspectroscopy. It starts with basic theory as it applies to small molecules and then expands it to include the large biomolecules which are the main topic of the book with an emphasis on practical experiments, results analysis and medical and diagnostic applications. This book is unique in that it addresses both the parent spectroscopy and the microspectroscopic aspects in one volume. Part I covers the basic theory, principles and instrumentation of classical vibrational, infrared and Raman spectroscopy. It is aimed at researchers with a background in chemistry and physics, and is presented at the level suitable for first year graduate students. The latter half of Part I is devoted to more novel subjects in vibrational spectroscopy, such as resonance and non-linear Raman effects, vibrational optical activity, time resolved spectroscopy and computational methods. Thus, Part 1 represents a short course into modern vibrational spectroscopy. Part II is devoted in its entirety to applications of vibrational spectroscopic techniques to biophysical and bio-structural research, and the more recent extension of vibrational spectroscopy to microscopic data acquisition. Vibrational microscopy (or microspectroscopy) has opened entirely new avenues toward applications in the biomedical sciences, and has created new research fields collectively referred to as Spectral Cytopathology (SCP) and Spectral Histopathology (SHP). In order to fully exploit the information contained in the micro-spectral datasets, methods of multivariate analysis need to be employed. These methods, along with representative results of both SCP and SHP are presented and discussed in detail in Part II.
Informal, effective undergraduate-level text introduces vibrational and electronic spectroscopy, presenting applications of group theory to the interpretation of UV, visible, and infrared spectra without assuming a high level of background knowledge. 200 problems with solutions. Numerous illustrations. "A uniform and consistent treatment of the subject matter." — Journal of Chemical Education.
Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.
Modern Vibrational Spectroscopy and Micro-Spectroscopy: Theory, Instrumentation and Biomedical Applications unites the theory and background of conventional vibrational spectroscopy with the principles of microspectroscopy. It starts with basic theory as it applies to small molecules and then expands it to include the large biomolecules which are the main topic of the book with an emphasis on practical experiments, results analysis and medical and diagnostic applications. This book is unique in that it addresses both the parent spectroscopy and the microspectroscopic aspects in one volume. Part I covers the basic theory, principles and instrumentation of classical vibrational, infrared and Raman spectroscopy. It is aimed at researchers with a background in chemistry and physics, and is presented at the level suitable for first year graduate students. The latter half of Part I is devoted to more novel subjects in vibrational spectroscopy, such as resonance and non-linear Raman effects, vibrational optical activity, time resolved spectroscopy and computational methods. Thus, Part 1 represents a short course into modern vibrational spectroscopy. Part II is devoted in its entirety to applications of vibrational spectroscopic techniques to biophysical and bio-structural research, and the more recent extension of vibrational spectroscopy to microscopic data acquisition. Vibrational microscopy (or microspectroscopy) has opened entirely new avenues toward applications in the biomedical sciences, and has created new research fields collectively referred to as Spectral Cytopathology (SCP) and Spectral Histopathology (SHP). In order to fully exploit the information contained in the micro-spectral datasets, methods of multivariate analysis need to be employed. These methods, along with representative results of both SCP and SHP are presented and discussed in detail in Part II.
The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis. It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. * A revised and updated edition of a successful, clearly written book * Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers * Provides numerous worked examples, calculations and questions at the end of chapters
This unified treatment introduces upper-level undergraduates and graduate students to the concepts and methods of modern molecular spectroscopy and their applications to quantum electronics, lasers, and related optical phenomena. Starting with a review of the prerequisite quantum mechanical background, the text examines atomic spectra and diatomic molecules, including the rotation and vibration of diatomic molecules and their electronic spectra. A discussion of rudimentary group theory advances to considerations of the rotational spectra of polyatomic molecules and their vibrational and electronic spectra; molecular beams, masers, and lasers; and a variety of forms of spectroscopy, including optical resonance spectroscopy, coherent transient spectroscopy, multiple-photon spectroscopy, and spectroscopy beyond molecular constants. The text concludes with a series of useful appendixes.
This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.
Infrared and Raman Spectroscopy of Biological Materials facilitates a comprehensive and through understanding of the latest developments in vibrational spectroscopy. It contains explains key breakthroughs in the methodologies and techniques for infrared, near-infrared, and Raman spectroscopy. Topics include qualitative and quantitative analysis, biomedical applications, vibrational studies of enzymatic catalysis, and chemometrics.
This book reflects the dramatic increase in the number of Raman spectrometers being sold to and used by non-expert practitioners. It contains coverage of Resonance Raman and SERS, two hot areas of Raman, in a form suitable for the non-expert. Builds Raman theory up in stages without overloading the reader with complex theory Includes two chapters on instrumentation and interpretation that shows how Raman spectra can be obtained and interpreted Explains the potential of using Raman spectroscopy in a wide variety of applications Includes detailed, but concise information and worked examples