Introduction To Modern Finsler Geometry

Introduction To Modern Finsler Geometry

Author: Yi-bing Shen

Publisher: World Scientific Publishing Company

Published: 2016-02-25

Total Pages: 406

ISBN-13: 981470492X

DOWNLOAD EBOOK

This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.


An Introduction to Riemann-Finsler Geometry

An Introduction to Riemann-Finsler Geometry

Author: D. Bao

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 453

ISBN-13: 1461212685

DOWNLOAD EBOOK

This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.


Introduction to Modern Finsler Geometry

Introduction to Modern Finsler Geometry

Author: Yibing Shen

Publisher: World Scientific Publishing Company

Published: 2016

Total Pages: 393

ISBN-13: 9789814704908

DOWNLOAD EBOOK

This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.


An Introduction to Finsler Geometry

An Introduction to Finsler Geometry

Author: Xiaohuan Mo

Publisher: World Scientific

Published: 2006

Total Pages: 130

ISBN-13: 9812773711

DOWNLOAD EBOOK

This introductory book uses the moving frame as a tool and develops Finsler geometry on the basis of the Chern connection and the projective sphere bundle. It systematically introduces three classes of geometrical invariants on Finsler manifolds and their intrinsic relations, analyzes local and global results from classic and modern Finsler geometry, and gives non-trivial examples of Finsler manifolds satisfying different curvature conditions.


An Introduction To Finsler Geometry

An Introduction To Finsler Geometry

Author: Xiaohuan Mo

Publisher: World Scientific

Published: 2006-04-12

Total Pages: 130

ISBN-13: 9814478105

DOWNLOAD EBOOK

This introductory book uses the moving frame as a tool and develops Finsler geometry on the basis of the Chern connection and the projective sphere bundle. It systematically introduces three classes of geometrical invariants on Finsler manifolds and their intrinsic relations, analyzes local and global results from classic and modern Finsler geometry, and gives non-trivial examples of Finsler manifolds satisfying different curvature conditions.


Comparison Finsler Geometry

Comparison Finsler Geometry

Author: Shin-ichi Ohta

Publisher: Springer Nature

Published: 2021-10-09

Total Pages: 324

ISBN-13: 3030806502

DOWNLOAD EBOOK

This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.


Applied Differential Geometry: A Modern Introduction

Applied Differential Geometry: A Modern Introduction

Author: Vladimir G Ivancevic

Publisher: World Scientific

Published: 2007-05-21

Total Pages: 1346

ISBN-13: 9814475645

DOWNLOAD EBOOK

This graduate-level monographic textbook treats applied differential geometry from a modern scientific perspective. Co-authored by the originator of the world's leading human motion simulator — “Human Biodynamics Engine”, a complex, 264-DOF bio-mechanical system, modeled by differential-geometric tools — this is the first book that combines modern differential geometry with a wide spectrum of applications, from modern mechanics and physics, via nonlinear control, to biology and human sciences. The book is designed for a two-semester course, which gives mathematicians a variety of applications for their theory and physicists, as well as other scientists and engineers, a strong theory underlying their models.


Riemannian Geometry

Riemannian Geometry

Author: Isaac Chavel

Publisher: Cambridge University Press

Published: 1995-01-27

Total Pages: 402

ISBN-13: 9780521485784

DOWNLOAD EBOOK

This book provides an introduction to Riemannian geometry, the geometry of curved spaces. Its main theme is the effect of the curvature of these spaces on the usual notions of geometry, angles, lengths, areas, and volumes, and those new notions and ideas motivated by curvature itself. Isoperimetric inequalities--the interplay of curvature with volume of sets and the areas of their boundaries--is reviewed along with other specialized classical topics. A number of completely new themes are created by curvature: they include local versus global geometric properties, that is, the interaction of microscopic behavior of the geometry with the macroscopic structure of the space. Also featured is an ambitious "Notes and Exercises" section for each chapter that will develop and enrich the reader's appetite and appreciation for the subject.


Lectures On Finsler Geometry

Lectures On Finsler Geometry

Author: Zhongmin Shen

Publisher: World Scientific

Published: 2001-05-22

Total Pages: 323

ISBN-13: 9814491659

DOWNLOAD EBOOK

In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.