Introduction To Matrix Theory: With Applications In Economics And Engineering (Second Edition)

Introduction To Matrix Theory: With Applications In Economics And Engineering (Second Edition)

Author: Ferenc Szidarovszky

Publisher: World Scientific

Published: 2022-12-19

Total Pages: 469

ISBN-13: 9811256667

DOWNLOAD EBOOK

Linear algebra and matrix theory are among the most important and most frequently applied branches of mathematics. They are especially important in solving engineering and economic models, where either the model is assumed linear, or the nonlinear model is approximated by a linear model, and the resulting linear model is examined.This book is mainly a textbook, that covers a one semester upper division course or a two semester lower division course on the subject.The second edition will be an extended and modernized version of the first edition. We added some new theoretical topics and some new applications from fields other than economics. We also added more difficult exercises at the end of each chapter which require deep understanding of the theoretical issues. We also modernized some proofs in the theoretical discussions which give better overview of the study material. In preparing the manuscript we also corrected the typos and errors, so the second edition will be a corrected, extended and modernized new version of the first edition.


Introduction to Matrix Analysis and Applications

Introduction to Matrix Analysis and Applications

Author: Fumio Hiai

Publisher: Springer Science & Business Media

Published: 2014-02-06

Total Pages: 337

ISBN-13: 3319041509

DOWNLOAD EBOOK

Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.


Matrix Theory

Matrix Theory

Author: Fuzhen Zhang

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 290

ISBN-13: 1475757972

DOWNLOAD EBOOK

This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.


Linear Algebra: Theory and Applications

Linear Algebra: Theory and Applications

Author: Kenneth Kuttler

Publisher: The Saylor Foundation

Published: 2012-01-29

Total Pages: 503

ISBN-13:

DOWNLOAD EBOOK

This is a book on linear algebra and matrix theory. While it is self contained, it will work best for those who have already had some exposure to linear algebra. It is also assumed that the reader has had calculus. Some optional topics require more analysis than this, however. I think that the subject of linear algebra is likely the most significant topic discussed in undergraduate mathematics courses. Part of the reason for this is its usefulness in unifying so many different topics. Linear algebra is essential in analysis, applied math, and even in theoretical mathematics. This is the point of view of this book, more than a presentation of linear algebra for its own sake. This is why there are numerous applications, some fairly unusual.


Linear Algebra and Matrix Theory

Linear Algebra and Matrix Theory

Author: Robert R. Stoll

Publisher: Courier Corporation

Published: 2012-10-17

Total Pages: 290

ISBN-13: 0486623181

DOWNLOAD EBOOK

Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.


Linear Algebra Done Right

Linear Algebra Done Right

Author: Sheldon Axler

Publisher: Springer Science & Business Media

Published: 1997-07-18

Total Pages: 276

ISBN-13: 9780387982595

DOWNLOAD EBOOK

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.


Matrix Theory

Matrix Theory

Author: Joel N. Franklin

Publisher: Courier Corporation

Published: 2012-07-31

Total Pages: 319

ISBN-13: 0486136388

DOWNLOAD EBOOK

Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.


Linear Algebra

Linear Algebra

Author: Alan Tucker

Publisher: Macmillan College

Published: 1993

Total Pages: 472

ISBN-13:

DOWNLOAD EBOOK

Covers the fundamental role of linear algebra with both pure and applied mathematics as well as client disciplines such as engineering, the physical sciences and economics. This text examines the interrelationships amongst theory, computation and applications.


Matrix Differential Calculus with Applications in Statistics and Econometrics

Matrix Differential Calculus with Applications in Statistics and Econometrics

Author: Jan R. Magnus

Publisher: John Wiley & Sons

Published: 2019-03-15

Total Pages: 660

ISBN-13: 1119541166

DOWNLOAD EBOOK

A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it. Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference. Fulfills the need for an updated and unified treatment of matrix differential calculus Contains many new examples and exercises based on questions asked of the author over the years Covers new developments in field and features new applications Written by a leading expert and pioneer of the theory Part of the Wiley Series in Probability and Statistics Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.