The Foundations of Magnetic Recording

The Foundations of Magnetic Recording

Author: John C. Mallinson

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 234

ISBN-13: 0080506828

DOWNLOAD EBOOK

This expanded and updated new edition provides a comprehensive overview of the science and technology of magnetic recording. In the six years since the publication of the first edition, the magnetic recording and storage industry has burgeoned with the introduction of a host of new ideas and technologies. His book contains a discussion of almost every technologically important aspect of recording. - Continas complete coverage of the current technology of magnetic recording and storage - Written in a non-mathematical but scientifically accurate style - Permits intelligent evaluations to be made of both the past evolution and the future trends in a wide variety of magnetic storage devices


The Physics of Ultra-High-Density Magnetic Recording

The Physics of Ultra-High-Density Magnetic Recording

Author: M.L. Plumer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 364

ISBN-13: 364256657X

DOWNLOAD EBOOK

Application-oriented book on magnetic recording, focussing on the underlying physical mechanisms that play crucial roles in medium and transducer development for high areal density disk drives.


Introduction to Magnetic Random-Access Memory

Introduction to Magnetic Random-Access Memory

Author: Bernard Dieny

Publisher: John Wiley & Sons

Published: 2016-11-14

Total Pages: 264

ISBN-13: 1119079357

DOWNLOAD EBOOK

Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons’ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic materials and devices. It presents the basic phenomena involved in MRAM, the materials and film stacks being used, the basic principles of the various types of MRAM (toggle and spin-transfer torque; magnetized in-plane or perpendicular-to-plane), the back-end magnetic technology, and recent developments toward logic-in-memory architectures. It helps bridge the cultural gap between the microelectronics and magnetics communities.


Introduction to Magnetism and Magnetic Materials

Introduction to Magnetism and Magnetic Materials

Author: David Jiles

Publisher: CRC Press

Published: 2015-09-18

Total Pages: 512

ISBN-13: 148223890X

DOWNLOAD EBOOK

A long overdue update, this edition of Introduction to Magnetism and Magnetic Materials is a complete revision of its predecessor. While it provides relatively minor updates to the first two sections, the third section contains vast updates to reflect the enormous progress made in applications in the past 15 years, particularly in magnetic recordin


Introduction to Magnetic Materials

Introduction to Magnetic Materials

Author: B. D. Cullity

Publisher: John Wiley & Sons

Published: 2011-10-07

Total Pages: 535

ISBN-13: 1118211499

DOWNLOAD EBOOK

Introduction to Magnetic Materials, 2nd Edition covers the basics of magnetic quantities, magnetic devices, and materials used in practice. While retaining much of the original, this revision now covers SQUID and alternating gradient magnetometers, magnetic force microscope, Kerr effect, amorphous alloys, rare-earth magnets, SI Units alongside cgs units, and other up-to-date topics. In addition, the authors have added an entirely new chapter on information materials. The text presents materials at the practical rather than theoretical level, allowing for a physical, quantitative, measurement-based understanding of magnetism among readers, be they professional engineers or graduate-level students.


Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording

Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording

Author: Reuben Jueyuan Yeo

Publisher: Springer

Published: 2017-06-20

Total Pages: 184

ISBN-13: 9811048827

DOWNLOAD EBOOK

This book presents the latest research in ultrathin carbon-based protective overcoats for high areal density magnetic data storage systems, with a particular focus on hard disk drives (HDDs) and tape drives. These findings shed new light on how the microstructure and interfacial chemistry of these sub-20 nm overcoats can be engineered at the nanoscale regime to obtain enhanced properties for wear, thermal and corrosion protection – which are critical for such applications. Readers will also be provided with fresh experimental insights into the suitability of graphene as an atomically-thin overcoat for HDD media. The easy readability of this book will appeal to a wide audience, ranging from non-specialists with a general interest in the field to scientists and industry professionals directly involved in thin film and coatings research.


Tribology and Mechanics of Magnetic Storage Devices

Tribology and Mechanics of Magnetic Storage Devices

Author: Bharat Bhushan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1145

ISBN-13: 1461223644

DOWNLOAD EBOOK

Since January 1990, when the first edition ofthis first-of-a-kind book appeared, there has been much experimental and theoretical progress in the multi disciplinary subject of tribology and mechanics of magnetic storage devices. The subject has matured into a rigorous discipline, and many university tribology and mechanics courses now routinely contain material on magnetic storage devices. The major growth in the subject has been on the micro- and nanoscale aspects of tribology and mechanics. Today, most large magnetic storage industries use atomic force microscopes to image the magnetic storage components. Many companies use variations of AFMs such as friction force microscopes (FFMs) for frictional studies. These instruments have also been used for studying scratch, wear, and indentation. These studies are valuable in the fundamental understanding of interfacial phenomena. In the second edition, I have added a new chapter, Chapter 11, on micro and nanoscale aspects of tribology and mechanics of magnetic storage compo nents. This chapter presents the state of the art of the micro/nanotribology and micro/nanomechanics of magnetic storage components. In addition, typographical errors in Chapters 1 to 10 and the appendixes have been corrected. These additions update this book and make it more valuable to researchers of the subject. I am grateful to many colleagues and particularly to my students, whose work is reported in Chapter 11. I thank my wife, Sudha, who has been forbearing during the progress of the research reported in this chapter.


Magnetic Materials

Magnetic Materials

Author: Nicola A. Spaldin

Publisher: Cambridge University Press

Published: 2010-08-19

Total Pages:

ISBN-13: 1139491555

DOWNLOAD EBOOK

Magnetic Materials is an excellent introduction to the basics of magnetism, magnetic materials and their applications in modern device technologies. Retaining the concise style of the original, this edition has been thoroughly revised to address significant developments in the field, including the improved understanding of basic magnetic phenomena, new classes of materials, and changes to device paradigms. With homework problems, solutions to selected problems and a detailed list of references, Magnetic Materials continues to be the ideal book for a one-semester course and as a self-study guide for researchers new to the field. New to this edition: • Entirely new chapters on Exchange Bias Coupling, Multiferroic and Magnetoelectric Materials, Magnetic Insulators • Revised throughout, with substantial updates to the chapters on Magnetic Recording and Magnetic Semiconductors, incorporating the latest advances in the field • New example problems with worked solutions


Novel Magnetic Nanostructures

Novel Magnetic Nanostructures

Author: Natalia Domracheva

Publisher: Elsevier

Published: 2018-06-14

Total Pages: 492

ISBN-13: 0128135956

DOWNLOAD EBOOK

Novel Magnetic Nanostructures: Unique Properties and Applications reviews the synthesis, design, characterization and unique properties of emerging nanostructured magnetic materials. It discusses the most promising and relevant applications, including data storage, spintronics and biomedical applications. Properties investigated include electronic, self-assembling, multifunctional, and magnetic properties, along with magnetic phenomena. Structures range from magnetic nanoclusters, nanoparticles, and nanowires, to multilayers and self-assembling nanosystems. This book provides a better understanding of the static and dynamic magnetism in new nanostructures for important applications. - Provides an overview of the latest research on novel magnetic nanostructures, including molecular nanomagnets, metallacrown magnetic nanostructures, magnetic dendrimers, self-assembling magnetic structures, multifunctional nanostructures, and much more - Reviews the synthesis, design, characterization and detection of useful properties in new magnetic nanostructures - Highlights the most relevant applications, including spintronic, data storage and biomedical applications