The purpose of this paper is to introduce the reader to the active sun as a source of disturbance that affect the magnetic field measured at the earth's surface. Included under this topic are the general sun's properties, solar surface activity centers and characteristics of the solar field and ejecta flowing into interplanetary space.
In the last decades, palaeomagnetic research has provided important information about the past variation of the Earth’s magnetic field (EMF) from its origin to the present day. However, questions regarding the origin and evolution of the EMF as well as the frequency and spatial distribution of its variations still remain open to debate. This Special Publication provides new insights into the study of the temporal and spatial evolution of the EMF presenting new data from palaeomagnetic and rock magnetic studies of archaeological materials, sediments and lavas. The papers presented cover a wide range of topics related to archaeology, stratigraphy and climate, including new data from several parts of the world, such as Europe, Africa, Australia, New Zealand, India and the Baltic Sea. This Special Publication aims to present an overview of the most recent secular variation studies and their use to disclose fundamental properties of the EMF evolution.
An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth's magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates
An introduction to geomagnetic storms and the hazards they pose at the Earth’s surface Geomagnetic storms are a type of space weather event that can create Geomagnetically Induced Currents (GICs) which, once they reach Earth’s surface, can interfere with power grids and transport infrastructure. Understanding the characteristics and impacts of GICs requires scientific insights from solar physics, magnetospheric physics, aeronomy, and ionospheric physics, as well as geophysics and power engineering. Geomagnetically Induced Currents from the Sun to the Power Grid is a practical introduction for researchers and practitioners that provides tools and techniques from across these disciplines. Volume highlights include: Analysis of causes of geomagnetic storms that create GICs Data and methods used to analyze and forecast GIC hazard GIC impacts on the infrastructure of the bulk power system Analysis techniques used in different areas of GIC research New methods to validate and predict GICs in transmission systems
Topics involved in studies of the Earth's magnetic field and its secular variation range from the intricate observations of geomagnetism, to worldwide studies of archeomagnetism and paleomagnetism, through to the complex mathematics of dynamo theory. Traditionally these different aspects of geomagnetism have in the main been studied and presented in isolation from each other. This text draws together these lines of inquiry into an integrated framework to highlight the interrelationships and thus to provide a more comprehensive understanding of the geomagnetic field.
The main magnetic field of the Earth is a complex phenomenon. To understand its origins in the fluid of the Earth's core, and how it changes in time requires a variety of mathematical and physical tools. This book presents the foundations of geomagnetism, in detail and developed from first principles. The book is based on George Backus' courses for graduate students at the University of California, San Diego. The material is mathematically rigorous, but is logically developed and has consistent notation, making it accessible to a broad range of readers. The book starts with an overview of the phenomena of interest in geomagnetism, and then goes on to deal with the phenomena in detail, building the necessary techniques in a thorough and consistent manner. Students and researchers will find this book to be an invaluable resource in the appreciation of the mathematical and physical foundations of geomagnetism.