Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32

Author: Elias M. Stein

Publisher: Princeton University Press

Published: 2016-06-02

Total Pages: 312

ISBN-13: 140088389X

DOWNLOAD EBOOK

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.


Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32

Author: Elias M. Stein

Publisher:

Published: 2016

Total Pages: 310

ISBN-13:

DOWNLOAD EBOOK

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.


Analysis in Euclidean Space

Analysis in Euclidean Space

Author: Kenneth Hoffman

Publisher: Courier Dover Publications

Published: 2019-07-17

Total Pages: 449

ISBN-13: 0486833658

DOWNLOAD EBOOK

Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory. Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover sequences of functions, normed linear spaces, and the Lebesgue interval. They discuss most of the basic properties of integral and measure, including a brief look at orthogonal expansions. A chapter on differentiable mappings addresses implicit and inverse function theorems and the change of variable theorem. Exercises appear throughout the book, and extensive supplementary material includes a Bibliography, List of Symbols, Index, and an Appendix with background in elementary set theory.


Classical and Multilinear Harmonic Analysis

Classical and Multilinear Harmonic Analysis

Author: Camil Muscalu

Publisher: Cambridge University Press

Published: 2013-01-31

Total Pages: 341

ISBN-13: 1107031826

DOWNLOAD EBOOK

This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.


Fourier Analysis

Fourier Analysis

Author: Elias M. Stein

Publisher: Princeton University Press

Published: 2011-02-11

Total Pages: 326

ISBN-13: 1400831237

DOWNLOAD EBOOK

This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.


Fourier Analysis

Fourier Analysis

Author: Javier Duoandikoetxea Zuazo

Publisher: American Mathematical Soc.

Published: 2001-01-01

Total Pages: 248

ISBN-13: 9780821883846

DOWNLOAD EBOOK

Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, H1, BMO spaces, and the T1 theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform in higher dimensions. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between H1, BMO, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the T1 theorem, which has been of crucial importance in the field. This volume has been updated and translated from the original Spanish edition (1995). Minor changes have been made to the core of the book; however, the sections, "Notes and Further Results" have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.


Introduction to Fourier Analysis and Wavelets

Introduction to Fourier Analysis and Wavelets

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 398

ISBN-13: 082184797X

DOWNLOAD EBOOK

This text provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. It contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.