While the basic operating principles of Helical Magnetic Flux Compression Generators are easy to understand, the details of their construction and performance limits have been described only in government reports, many of them classified. Conferences in the field of flux compression are also dominated by contributions from government (US and foreign) laboratories. And the government-sponsored research has usually been concerned with very large generators with explosive charges that require elaborate facilities and safety arrangements. This book emphasizes research into small generators (less than 500 grams of high explosives) and explains in detail the physical fundamentals, construction details, and parameter-variation effects related to them.
A discussion of explosive pulsed power systems and their applications, this book consists of 7 chapters. The first five describe the basic physics of these sources and their ancillary equipment, based on a manual for training engineers in Russia. Chapter 6 is a description of codes and methodologies used at Loughborough University in the UK to build flux compressors, while Chapter 7 covers two specific applications: high power lasers and high power microwave sources. The book introduces all types of explosive power sources and their ancillary equipment, the procedures required to build them, and specific applications.
Explosive pulsed power generators are devices that either convert the chemical energy stored in explosives into electrical energy or use the shock waves generated by explosives to release energy stored in ferroelectric and ferromagnetic materials. The objective of this book is to acquaint the reader with the principles of operation of explosive generators and to provide details on how to design, build, and test three types of generators: flux compression, ferroelectric, and ferromagnetic generators, which are the most developed and the most near term for practical applications. Containing a considerable amount of new experimental data that has been collected by the authors, this is the first book that treats all three types of explosive pulsed power generators. In addition, there is a brief introduction to a fourth type ix explosive generator called a moving magnet generator. As practical applications for these generators evolve, students, scientists, and engineers will have access to the results of a considerable body of experience gained by almost 10 years of intense research and development by the authors.
The generation of megagauss fields for science and technology is an exciting area at the extremes of parameter space, involving the application and controlled handling of extremely high power and energy densities in small volumes and on short time scales. New physical phenomena, technological challenges, and the selection and development of materials, together create a unique potential and synergy resulting in fascinating discoveries and achievements. This book is a collection of the contributions of an international conference, which assembled the leading scientists and engineers worldwide working on the generation and use of the strongest magnetic fields possible. Other research activities include generators that employ explosives to create ultra-high pulsed power for different applications, such as megavolt or radiation sources. Additional topics are the generation of plasmas and magnetized plasmas for fusion, imploding liners, rail guns, etc.
The generation and use of megagauss magnetic fields have been subjects of research and development in laboratories around the world for over a quarter of a century. Research goals have included the development of compact, short-pulse, electrical power sources and the production of ultrahigh magnetic field strengths over significant experimental volumes. Energies measured in megajoules, currents in megamperes and timescales of microseconds are not uncommon in such work. Phase changes, insulator breakdowns, and local des truction of the apparatus are also frequently encountered. Some efforts have involved the use of high explosive systems, developing methodologies rather distinct from those of a normal physics laboratory. Manipulation of magnetic flux to exchange energy between high speed, electrically conducting flows and high strength electromagnetic fields remains, of course, a basic interaction of classical physics. The remoteness of the necessary experimental sites (at least in many instances) and the various national concerns for security of defense-related research have often limited the flow of information between investigators of separate organizations, working in common areas of technical concern. Occa sionally, however, it has been possible for the community of scientists and engineers engaged in work on high magnetic fields and related high energy den sity systems to gather together and exchange results and plans, successes and failures. The first such international gathering was in 1965 at the Conference on Megagauss Magnetic Field Generation by Explosives and Related Experi ments, Frascati, Italy.
This international conference was organized by the sponsoring agencies with the following objectives in mind: to bring together active researchers involved in energy compression, switching, and storage who have a major interest in plasma physics, electron beams, electric and magnetic energy storage systems, and high voltage and high current switches. Areas of interest include: Slow systems: 50-60 Hz machinery, transformers, flywheel-homopolar generators, slow capacitors, inductors, and solid state switches. Inter mediate systems: fast capacitor banks, superconducting storage and switch ing, gas, vacuum, and dielectric switching, nonlinear (magnetic) switching, 5 6 fast (10 - 10 Hz) capacitors and fuses. Fast systems: Marx, Blumlein, oil, water, and pressurized water dielectrics, switches, magnetic insula tion, electron beams, and plasmas. The Editors extend thanks to all the authors, and attendees (and their supporting institutions, and companies), everyone of whom in his own measure helped to make the conference a success. The Editors further wish to thank the members of the Scientific Committee for the help they have given in organizing the conference and in editing, especially J. C. Martin and H. L. Laquer. Special recognition is due the Lawrence Livermore Laboratory whose Electrical Engineering Department provided the Secretary of the Scientific Committee and one of the Editors, and the yeowoman services of Sharon Dodson and Cheri Johnson in all the mailings, correspondence, and receiving and organizing of the manuscripts. The LLL Technical Information Department provided the design and printing of the conference announcements and the instructional formats for the authors' manuscripts.