Introduction to Diophantine Approximations

Introduction to Diophantine Approximations

Author: Serge Lang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 138

ISBN-13: 1461242207

DOWNLOAD EBOOK

The aim of this book is to illustrate by significant special examples three aspects of the theory of Diophantine approximations: the formal relationships that exist between counting processes and the functions entering the theory; the determination of these functions for numbers given as classical numbers; and certain asymptotic estimates holding almost everywhere. Each chapter works out a special case of a much broader general theory, as yet unknown. Indications for this are given throughout the book, together with reference to current publications. The book may be used in a course in number theory, whose students will thus be put in contact with interesting but accessible problems on the ground floor of mathematics.


Diophantine Geometry

Diophantine Geometry

Author: Marc Hindry

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 574

ISBN-13: 1461212103

DOWNLOAD EBOOK

This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.


Diophantine Approximation on Linear Algebraic Groups

Diophantine Approximation on Linear Algebraic Groups

Author: Michel Waldschmidt

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 649

ISBN-13: 3662115697

DOWNLOAD EBOOK

The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.


An Introduction to Diophantine Equations

An Introduction to Diophantine Equations

Author: Titu Andreescu

Publisher: Springer Science & Business Media

Published: 2010-09-02

Total Pages: 350

ISBN-13: 0817645497

DOWNLOAD EBOOK

This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.


Diophantine Analysis

Diophantine Analysis

Author: Jorn Steuding

Publisher: CRC Press

Published: 2005-05-19

Total Pages: 271

ISBN-13: 1420057200

DOWNLOAD EBOOK

While its roots reach back to the third century, diophantine analysis continues to be an extremely active and powerful area of number theory. Many diophantine problems have simple formulations, they can be extremely difficult to attack, and many open problems and conjectures remain. Diophantine Analysis examines the theory of diophantine ap


Diophantine Approximations

Diophantine Approximations

Author: Ivan Niven

Publisher: Courier Corporation

Published: 2013-01-23

Total Pages: 82

ISBN-13: 0486164705

DOWNLOAD EBOOK

This self-contained treatment covers approximation of irrationals by rationals, product of linear forms, multiples of an irrational number, approximation of complex numbers, and product of complex linear forms. 1963 edition.


Diophantine Approximation

Diophantine Approximation

Author: Robert F. Tichy

Publisher: Springer Science & Business Media

Published: 2008-07-10

Total Pages: 416

ISBN-13: 3211742808

DOWNLOAD EBOOK

This volume contains 21 research and survey papers on recent developments in the field of diophantine approximation, which are based on lectures given at a conference at the Erwin Schrödinger-Institute (Vienna, 2003). The articles are either in the spirit of more classical diophantine analysis or of a geometric or combinatorial flavor. Several articles deal with estimates for the number of solutions of diophantine equations as well as with congruences and polynomials.


Solving the Pell Equation

Solving the Pell Equation

Author: Michael Jacobson

Publisher: Springer Science & Business Media

Published: 2008-12-02

Total Pages: 504

ISBN-13: 038784922X

DOWNLOAD EBOOK

Pell’s Equation is a very simple Diophantine equation that has been known to mathematicians for over 2000 years. Even today research involving this equation continues to be very active, as can be seen by the publication of at least 150 articles related to this equation over the past decade. However, very few modern books have been published on Pell’s Equation, and this will be the first to give a historical development of the equation, as well as to develop the necessary tools for solving the equation. The authors provide a friendly introduction for advanced undergraduates to the delights of algebraic number theory via Pell’s Equation. The only prerequisites are a basic knowledge of elementary number theory and abstract algebra. There are also numerous references and notes for those who wish to follow up on various topics.


Approximation by Algebraic Numbers

Approximation by Algebraic Numbers

Author: Yann Bugeaud

Publisher: Cambridge University Press

Published: 2004-11-08

Total Pages: 292

ISBN-13: 1139455672

DOWNLOAD EBOOK

An accessible and broad account of the approximation and classification of real numbers suited for graduate courses on Diophantine approximation (some 40 exercises are supplied), or as an introduction for non-experts. Specialists will appreciate the collection of over 50 open problems and the comprehensive list of more than 600 references.