Introduction to Probability

Introduction to Probability

Author: Joseph K. Blitzstein

Publisher: CRC Press

Published: 2014-07-24

Total Pages: 599

ISBN-13: 1466575573

DOWNLOAD EBOOK

Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.


Introduction to Probability

Introduction to Probability

Author: Dimitri Bertsekas

Publisher: Athena Scientific

Published: 2008-07-01

Total Pages: 544

ISBN-13: 188652923X

DOWNLOAD EBOOK

An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.


Introduction to Probability

Introduction to Probability

Author: David F. Anderson

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 447

ISBN-13: 110824498X

DOWNLOAD EBOOK

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.


Introduction to Probability, Statistics, and Random Processes

Introduction to Probability, Statistics, and Random Processes

Author: Hossein Pishro-Nik

Publisher:

Published: 2014-08-15

Total Pages: 746

ISBN-13: 9780990637202

DOWNLOAD EBOOK

The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.


Statistics Using Technology, Second Edition

Statistics Using Technology, Second Edition

Author: Kathryn Kozak

Publisher: Lulu.com

Published: 2015-12-12

Total Pages: 459

ISBN-13: 1329757254

DOWNLOAD EBOOK

Statistics With Technology, Second Edition, is an introductory statistics textbook. It uses the TI-83/84 calculator and R, an open source statistical software, for all calculations. Other technology can also be used besides the TI-83/84 calculator and the software R, but these are the ones that are presented in the text. This book presents probability and statistics from a more conceptual approach, and focuses less on computation. Analysis and interpretation of data is more important than how to compute basic statistical values.


A Modern Introduction to Probability and Statistics

A Modern Introduction to Probability and Statistics

Author: F.M. Dekking

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 485

ISBN-13: 1846281687

DOWNLOAD EBOOK

Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books


Probability and Bayesian Modeling

Probability and Bayesian Modeling

Author: Jim Albert

Publisher: CRC Press

Published: 2019-12-06

Total Pages: 553

ISBN-13: 1351030132

DOWNLOAD EBOOK

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.


All About Probability

All About Probability

Author: Carla Mooney

Publisher: Britannica Digital Learning

Published: 2014-05-30

Total Pages: 26

ISBN-13: 1625132123

DOWNLOAD EBOOK

Probability measures how likely it is something will happen. Is it more likely or less likely? Possible or impossible? What color crayon is less likely to be picked? Students are introduced to the processes of predicting, investigating, and reasoning. This title also will allow students to determine the main idea of a text, recount the key details, and explain how these details support the main idea.