Introductory Statistics with R

Introductory Statistics with R

Author: Peter Dalgaard

Publisher: Springer Science & Business Media

Published: 2008-06-27

Total Pages: 370

ISBN-13: 0387790543

DOWNLOAD EBOOK

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.


Learning Statistics with R

Learning Statistics with R

Author: Daniel Navarro

Publisher: Lulu.com

Published: 2013-01-13

Total Pages: 617

ISBN-13: 1326189727

DOWNLOAD EBOOK

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com


Introduction to Business Statistics through R software

Introduction to Business Statistics through R software

Author: Editor IJSMI

Publisher: International Journal of Statistics and Medical Informatics

Published: 2023-07-02

Total Pages: 103

ISBN-13:

DOWNLOAD EBOOK

Statistical methods are now widely used in different fields such as Business and Management, Economics, Biological, Physical sciences and including the new fields such as Data Science and Machine Learning. The data which form the basis for the statistical methods helps us to take scientific and informed decisions. Statistical methods deal with the collection, compilation, analysis and making inference from the data. This book deals with the statistical methods which are useful in Business and Management decision making. The methods include Probability, Sampling, Correlation, Regression and Hypothesis Testing, Time Series, Forecasting and Non-Parametric tests and advanced statistical models. The book uses open source R statistical software to carry out different statistical analysis with sample datasets. This book is third in series of Statistics books by the Author. Some of the contents are adopted from the author’s previous statistical book introduction to statistical methods and non-parametric methods.


Introductory Business Statistics 2e

Introductory Business Statistics 2e

Author: Alexander Holmes

Publisher:

Published: 2023-12-13

Total Pages: 1801

ISBN-13:

DOWNLOAD EBOOK

Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.


Using R for Introductory Statistics

Using R for Introductory Statistics

Author: John Verzani

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 522

ISBN-13: 1315360306

DOWNLOAD EBOOK

The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.


Statistics for Business

Statistics for Business

Author: Robert Stine

Publisher: Pearson

Published: 2015-08-17

Total Pages: 867

ISBN-13: 013442445X

DOWNLOAD EBOOK

In Statistics for Business: Decision Making and Analysis, authors Robert Stine and Dean Foster of the University of Pennsylvania’s Wharton School, take a sophisticated approach to teaching statistics in the context of making good business decisions. The authors show students how to recognize and understand each business question, use statistical tools to do the analysis, and how to communicate their results clearly and concisely. In addition to providing cases and real data to demonstrate real business situations, this text provides resources to support understanding and engagement. A successful problem-solving framework in the 4-M Examples (Motivation, Method, Mechanics, Message) model a clear outline for solving problems, new What Do You Think questions give students an opportunity to stop and check their understanding as they read, and new learning objectives guide students through each chapter and help them to review major goals. Software Hints provide instructions for using the most up-to-date technology packages. The Second Edition also includes expanded coverage and instruction of Excel® 2010.


Introduction to Business Statistics

Introduction to Business Statistics

Author: Ronald M. Weiers

Publisher: South Western Educational Publishing

Published: 2008

Total Pages: 853

ISBN-13: 9780324381443

DOWNLOAD EBOOK

Highly praised for its clarity and great examples, Weiers' INTRODUCTION TO BUSINESS STATISTICS, 6E introduces fundamental statistical concepts in a conversational language that connects with today's students. Even those intimidated by statistics quickly discover success with the book's proven learning aids, outstanding illustrations, non-technical terminology, and hundreds of current examples drawn from real-life experiences familiar to students. A continuing case and contemporary applications combine with more than 100 new or revised exercises and problems that reflect the latest changes in business today with an accuracy you can trust. You can easily introduce today's leading statistical software and teach not only how to complete calculations by hand and using Excel, but also how to determine which method is best for a particular task. The book's student-oriented approach is supported with a wealth of resources, including the innovative new CengageNOW online course management and learning system that saves you time while helping students master the statistical skills most important for business success.


An Introduction to Statistical Learning

An Introduction to Statistical Learning

Author: Gareth James

Publisher: Springer Nature

Published: 2023-08-01

Total Pages: 617

ISBN-13: 3031387473

DOWNLOAD EBOOK

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.


Statistics

Statistics

Author: Michael J. Crawley

Publisher: John Wiley & Sons

Published: 2005-05-06

Total Pages: 348

ISBN-13: 9780470022986

DOWNLOAD EBOOK

Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: http://www.imperial.ac.uk/bio/research/crawley/statistics Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.


Basic Statistics

Basic Statistics

Author: Tenko Raykov

Publisher: Rowman & Littlefield

Published: 2013

Total Pages: 345

ISBN-13: 1442218460

DOWNLOAD EBOOK

Basic Statistics provides an accessible and comprehensive introduction to statistics using the free, state-of-the-art, powerful software program R. This book is designed to both introduce students to key concepts in statistics and to provide simple instructions for using R. This concise book: Teaches essential concepts in statistics, assuming little background knowledge on the part of the reader Introduces students to R with as few sub-commands as possible for ease of use Provides practical examples from the educational, behavioral, and social sciences With clear explanations of statistical processes and step-by-step commands in R, Basic Statistics will appeal to students and professionals across the social and behavioral sciences.