Introduction to Bayesian Tracking and Particle Filters

Introduction to Bayesian Tracking and Particle Filters

Author: Lawrence D. Stone

Publisher: Springer Nature

Published: 2023-05-31

Total Pages: 124

ISBN-13: 3031322428

DOWNLOAD EBOOK

This book provides a quick but insightful introduction to Bayesian tracking and particle filtering for a person who has some background in probability and statistics and wishes to learn the basics of single-target tracking. It also introduces the reader to multiple target tracking by presenting useful approximate methods that are easy to implement compared to full-blown multiple target trackers. The book presents the basic concepts of Bayesian inference and demonstrates the power of the Bayesian method through numerous applications of particle filters to tracking and smoothing problems. It emphasizes target motion models that incorporate knowledge about the target’s behavior in a natural fashion rather than assumptions made for mathematical convenience. The background provided by this book allows a person to quickly become a productive member of a project team using Bayesian filtering and to develop new methods and techniques for problems the team may face.


Beyond the Kalman Filter: Particle Filters for Tracking Applications

Beyond the Kalman Filter: Particle Filters for Tracking Applications

Author: Branko Ristic

Publisher: Artech House

Published: 2003-12-01

Total Pages: 328

ISBN-13: 9781580538510

DOWNLOAD EBOOK

For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.


Bayesian Filtering and Smoothing

Bayesian Filtering and Smoothing

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2013-09-05

Total Pages: 255

ISBN-13: 110703065X

DOWNLOAD EBOOK

A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.


Particle Filters for Random Set Models

Particle Filters for Random Set Models

Author: Branko Ristic

Publisher: Springer Science & Business Media

Published: 2013-04-15

Total Pages: 184

ISBN-13: 1461463165

DOWNLOAD EBOOK

This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.


An Introduction to Sequential Monte Carlo

An Introduction to Sequential Monte Carlo

Author: Nicolas Chopin

Publisher: Springer Nature

Published: 2020-10-01

Total Pages: 378

ISBN-13: 3030478459

DOWNLOAD EBOOK

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.


Bayesian Estimation and Tracking

Bayesian Estimation and Tracking

Author: Anton J. Haug

Publisher: John Wiley & Sons

Published: 2012-05-29

Total Pages: 400

ISBN-13: 1118287800

DOWNLOAD EBOOK

A practical approach to estimating and tracking dynamic systems in real-worl applications Much of the literature on performing estimation for non-Gaussian systems is short on practical methodology, while Gaussian methods often lack a cohesive derivation. Bayesian Estimation and Tracking addresses the gap in the field on both accounts, providing readers with a comprehensive overview of methods for estimating both linear and nonlinear dynamic systems driven by Gaussian and non-Gaussian noices. Featuring a unified approach to Bayesian estimation and tracking, the book emphasizes the derivation of all tracking algorithms within a Bayesian framework and describes effective numerical methods for evaluating density-weighted integrals, including linear and nonlinear Kalman filters for Gaussian-weighted integrals and particle filters for non-Gaussian cases. The author first emphasizes detailed derivations from first principles of eeach estimation method and goes on to use illustrative and detailed step-by-step instructions for each method that makes coding of the tracking filter simple and easy to understand. Case studies are employed to showcase applications of the discussed topics. In addition, the book supplies block diagrams for each algorithm, allowing readers to develop their own MATLAB® toolbox of estimation methods. Bayesian Estimation and Tracking is an excellent book for courses on estimation and tracking methods at the graduate level. The book also serves as a valuable reference for research scientists, mathematicians, and engineers seeking a deeper understanding of the topics.


Random Finite Sets for Robot Mapping & SLAM

Random Finite Sets for Robot Mapping & SLAM

Author: John Stephen Mullane

Publisher: Springer Science & Business Media

Published: 2011-05-19

Total Pages: 161

ISBN-13: 3642213898

DOWNLOAD EBOOK

The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.


Digital Signal Processing with Matlab Examples, Volume 3

Digital Signal Processing with Matlab Examples, Volume 3

Author: Jose Maria Giron-Sierra

Publisher: Springer

Published: 2016-11-21

Total Pages: 443

ISBN-13: 9811025401

DOWNLOAD EBOOK

This is the third volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This book includes MATLAB codes to illustrate each of the main steps of the theory, offering a self-contained guide suitable for independent study. The code is embedded in the text, helping readers to put into practice the ideas and methods discussed. The book primarily focuses on filter banks, wavelets, and images. While the Fourier transform is adequate for periodic signals, wavelets are more suitable for other cases, such as short-duration signals: bursts, spikes, tweets, lung sounds, etc. Both Fourier and wavelet transforms decompose signals into components. Further, both are also invertible, so the original signals can be recovered from their components. Compressed sensing has emerged as a promising idea. One of the intended applications is networked devices or sensors, which are now becoming a reality; accordingly, this topic is also addressed. A selection of experiments that demonstrate image denoising applications are also included. In the interest of reader-friendliness, the longer programs have been grouped in an appendix; further, a second appendix on optimization has been added to supplement the content of the last chapter.


Nonlinear Data Assimilation

Nonlinear Data Assimilation

Author: Peter Jan Van Leeuwen

Publisher: Springer

Published: 2015-07-22

Total Pages: 130

ISBN-13: 3319183478

DOWNLOAD EBOOK

This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.


Probabilistic Robotics

Probabilistic Robotics

Author: Sebastian Thrun

Publisher: MIT Press

Published: 2005-08-19

Total Pages: 668

ISBN-13: 0262201623

DOWNLOAD EBOOK

An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.