Probability in Banach Spaces

Probability in Banach Spaces

Author: Michel Ledoux

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 493

ISBN-13: 3642202128

DOWNLOAD EBOOK

Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.


Introduction to Banach Spaces: Analysis and Probability: Volume 2

Introduction to Banach Spaces: Analysis and Probability: Volume 2

Author: Daniel Li

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 405

ISBN-13: 1108298168

DOWNLOAD EBOOK

This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.


Introduction to Banach Spaces: Analysis and Probability: Volume 1

Introduction to Banach Spaces: Analysis and Probability: Volume 1

Author: Daniel Li

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 463

ISBN-13: 110829815X

DOWNLOAD EBOOK

This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. In volume 2, four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.


An Introduction to Banach Space Theory

An Introduction to Banach Space Theory

Author: Robert E. Megginson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 613

ISBN-13: 1461206030

DOWNLOAD EBOOK

Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.


Banach Space Theory

Banach Space Theory

Author: Marián Fabian

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 820

ISBN-13: 1441975152

DOWNLOAD EBOOK

Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.


Introduction to Banach Spaces: Analysis and Probability:

Introduction to Banach Spaces: Analysis and Probability:

Author: Daniel Li

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 406

ISBN-13: 1108300081

DOWNLOAD EBOOK

This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.


Functional Analysis for Probability and Stochastic Processes

Functional Analysis for Probability and Stochastic Processes

Author: Adam Bobrowski

Publisher: Cambridge University Press

Published: 2005-08-11

Total Pages: 416

ISBN-13: 9780521831666

DOWNLOAD EBOOK

This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.


Martingales in Banach Spaces

Martingales in Banach Spaces

Author: Gilles Pisier

Publisher: Cambridge University Press

Published: 2016-06-06

Total Pages: 591

ISBN-13: 1107137241

DOWNLOAD EBOOK

This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.