Introduction to Asymptotic Methods

Introduction to Asymptotic Methods

Author: David Y. Gao

Publisher: CRC Press

Published: 2006-05-03

Total Pages: 270

ISBN-13: 1420011731

DOWNLOAD EBOOK

Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m


Introduction to Asymptotics

Introduction to Asymptotics

Author: Douglas Samuel Jones

Publisher: World Scientific

Published: 1997

Total Pages: 184

ISBN-13: 9789810229153

DOWNLOAD EBOOK

"A very attractive feature of the book is the numerous examples illustrating the methods. A fine collection of exercises enriches each chapter, challenging the reader to check his progress in understanding the methods".Mathematical Reviews"As an introductory book to asymptotics, with chapters on uniform asymptotics and exponential asymptotics, this book clearly fills a gap it has a friendly size and contains many convincing numerical examples and interesting exercises. Hence, I recommend the book to everyone who works in asymptotics".SIAM, 1998" it is an excellent book that contains interesting results and methods for the researchers. It will be useful for the students interested in analysis and lectures on asymptotic methods The reviewer recommends the book to everyone who is interested in analysis, engineers and specialists in ODE-s"Acta Sci. Math. (Szeged), 1999


Asymptotic Expansions of Integrals

Asymptotic Expansions of Integrals

Author: Norman Bleistein

Publisher: Courier Corporation

Published: 1986-01-01

Total Pages: 453

ISBN-13: 0486650820

DOWNLOAD EBOOK

Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.


Asymptotics in Statistics

Asymptotics in Statistics

Author: Lucien Le Cam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 299

ISBN-13: 1461211662

DOWNLOAD EBOOK

This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.


Asymptotic Analysis

Asymptotic Analysis

Author: J.D. Murray

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 172

ISBN-13: 1461211220

DOWNLOAD EBOOK

From the reviews: "A good introduction to a subject important for its capacity to circumvent theoretical and practical obstacles, and therefore particularly prized in the applications of mathematics. The book presents a balanced view of the methods and their usefulness: integrals on the real line and in the complex plane which arise in different contexts, and solutions of differential equations not expressible as integrals. Murray includes both historical remarks and references to sources or other more complete treatments. More useful as a guide for self-study than as a reference work, it is accessible to any upperclass mathematics undergraduate. Some exercises and a short bibliography included. Even with E.T. Copson's Asymptotic Expansions or N.G. de Bruijn's Asymptotic Methods in Analysis (1958), any academic library would do well to have this excellent introduction." (S. Puckette, University of the South) #Choice Sept. 1984#1


Asymptotics and Borel Summability

Asymptotics and Borel Summability

Author: Ovidiu Costin

Publisher: CRC Press

Published: 2008-12-04

Total Pages: 266

ISBN-13: 1420070320

DOWNLOAD EBOOK

Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, tr


Asymptotic Statistics

Asymptotic Statistics

Author: A. W. van der Vaart

Publisher: Cambridge University Press

Published: 2000-06-19

Total Pages: 470

ISBN-13: 9780521784504

DOWNLOAD EBOOK

This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.


Introduction to Asymptotics and Special Functions

Introduction to Asymptotics and Special Functions

Author: F. W. J. Olver

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 312

ISBN-13: 1483267083

DOWNLOAD EBOOK

Introduction to Asymptotics and Special Functions is a comprehensive introduction to two important topics in classical analysis: asymptotics and special functions. The integrals of a real variable are discussed, along with contour integrals and differential equations with regular and irregular singularities. The Liouville-Green approximation is also considered. Comprised of seven chapters, this volume begins with an overview of the basic concepts and definitions of asymptotic analysis and special functions, followed by a discussion on integrals of a real variable. Contour integrals are then examined, paying particular attention to Laplace integrals with a complex parameter and Bessel functions of large argument and order. Subsequent chapters focus on differential equations having regular and irregular singularities, with emphasis on Legendre functions as well as Bessel and confluent hypergeometric functions. A chapter devoted to the Liouville-Green approximation tackles asymptotic properties with respect to parameters and to the independent variable, eigenvalue problems, and theorems on singular integral equations. This monograph is intended for students needing only an introductory course to asymptotics and special functions.


Asymptotic Approximations of Integrals

Asymptotic Approximations of Integrals

Author: R. Wong

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 561

ISBN-13: 1483220710

DOWNLOAD EBOOK

Asymptotic Approximations of Integrals deals with the methods used in the asymptotic approximation of integrals. Topics covered range from logarithmic singularities and the summability method to the distributional approach and the Mellin transform technique for multiple integrals. Uniform asymptotic expansions via a rational transformation are also discussed, along with double integrals with a curve of stationary points. For completeness, classical methods are examined as well. Comprised of nine chapters, this volume begins with an introduction to the fundamental concepts of asymptotics, followed by a discussion on classical techniques used in the asymptotic evaluation of integrals, including Laplace's method, Mellin transform techniques, and the summability method. Subsequent chapters focus on the elementary theory of distributions; the distributional approach; uniform asymptotic expansions; and integrals which depend on auxiliary parameters in addition to the asymptotic variable. The book concludes by considering double integrals and higher-dimensional integrals. This monograph is intended for graduate students and research workers in mathematics, physics, and engineering.


A Distributional Approach to Asymptotics

A Distributional Approach to Asymptotics

Author: Ricardo Estrada

Publisher: Springer Science & Business Media

Published: 2012-09-08

Total Pages: 467

ISBN-13: 0817681302

DOWNLOAD EBOOK

"...The authors of this remarkable book are among the very few who have faced up to the challenge of explaining what an asymptotic expansion is, and of systematizing the handling of asymptotic series. The idea of using distributions is an original one, and we recommend that you read the book...[it] should be on your bookshelf if you are at all interested in knowing what an asymptotic series is." -"The Bulletin of Mathematics Books" (Review of the 1st edition) ** "...The book is a valuable one, one that many applied mathematicians may want to buy. The authors are undeniably experts in their field...most of the material has appeared in no other book." -"SIAM News" (Review of the 1st edition) This book is a modern introduction to asymptotic analysis intended not only for mathematicians, but for physicists, engineers, and graduate students as well. Written by two of the leading experts in the field, the text provides readers with a firm grasp of mathematical theory, and at the same time demonstrates applications in areas such as differential equations, quantum mechanics, noncommutative geometry, and number theory. Key features of this significantly expanded and revised second edition: * addition of a new chapter and many new sections * wide range of topics covered, including the Ces.ro behavior of distributions and their connections to asymptotic analysis, the study of time-domain asymptotics, and the use of series of Dirac delta functions to solve boundary value problems * novel approach detailing the interplay between underlying theories of asymptotic analysis and generalized functions * extensive examples and exercises at the end of each chapter * comprehensive bibliography and index This work is an excellent tool for the classroom and an invaluable self-study resource that will stimulate application of asymptotic