Is the solar system stable? Is there a unifying 'economy' principle in mechanics? How can a pointmass be described as a 'wave'? This book offers students an understanding of the most relevant and far reaching results of the theory of Analytical Mechanics, including plenty of examples, exercises, and solved problems.
Offers a modern treatment of classical mechanics so that transition to many fields in physics can be made with the least difficulty. This book deals with the formulation of Newtonian mechanics, Lagrangian dynamics, which are formulating the quantum mechanics and Hamilton-Jacobi equation which provides the transition to wave mechanics.
First published in 1987, this text offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton’s laws through Lagrange’s equations and Hamilton’s principle, to Hamilton’s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. A wealth of examples show the subject in action and a range of exercises – with solutions – are provided to help test understanding.
Analytical Mechanics, first published in 1999, provides a detailed introduction to the key analytical techniques of classical mechanics, one of the cornerstones of physics. It deals with all the important subjects encountered in an undergraduate course and prepares the reader thoroughly for further study at graduate level. The authors set out the fundamentals of Lagrangian and Hamiltonian mechanics early on in the book and go on to cover such topics as linear oscillators, planetary orbits, rigid-body motion, small vibrations, nonlinear dynamics, chaos, and special relativity. A special feature is the inclusion of many 'e-mail questions', which are intended to facilitate dialogue between the student and instructor. Many worked examples are given, and there are 250 homework exercises to help students gain confidence and proficiency in problem-solving. It is an ideal textbook for undergraduate courses in classical mechanics, and provides a sound foundation for graduate study.
With the direct, accessible, and pragmatic approach of Fowles and Cassiday's ANALYTICAL MECHANICS, Seventh Edition, thoroughly revised for clarity and concision, students will grasp challenging concepts in introductory mechanics. A complete exposition of the fundamentals of classical mechanics, this proven and enduring introductory text is a standard for the undergraduate Mechanics course. Numerical worked examples increased students' problem-solving skills, while textual discussions aid in student understanding of theoretical material through the use of specific cases.
Literatur zur analytischen Mechanik enthalt meist nur die klassische Theorie, an der sich seit Jahren nichts geandert hat. Dieses Buch fullt eine Lucke, indem es rund 250 neue Beispiele und rund 400 neue Aufgaben bietet sowie nun auch computergestutzte Rechenmethoden behandelt. Mathematische Theorie und ingenieurtechnische Anwendungen stehen dabei stets in einem ausgewogenen Verhaltnis zueinander. Mit vielen anschaulichen Abbildungen! (11/99)
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.