Implement TMR with Your Patients and Improve Their Quality of LifeDeveloped by Dr. Todd A. Kuiken and Dr. Gregory A. Dumanian, targeted muscle reinnervation (TMR) is a new approach to accessing motor control signals from peripheral nerves after amputation and providing sensory feedback to prosthesis users. This practical approach has many advantage
Psychoprosthetics is defined as the study of psychological aspects of prosthetic use and of rehabilitative processes in those conditions that require the use of prosthetic devices. Psychoprosthetics: State of the Knowledge brings together, into one easily accessible volume, the most recent and exciting research and knowledge in this new field
This book presents the latest techniques in amputation rehabilitation and summarizes the most recent research findings in the field of bionic limb reconstruction. Divided into seven parts written by experts in the field, it provides valuable information on e.g. upper extremity injuries, psychological considerations, prosthetic engineering, and surgical and rehabilitation strategies. Illustrative figures and photos of real-life settings further assist understanding. This book is of interest not only for plastic surgeons, but also for hand surgeons, orthopedic and trauma surgeons as well as therapists, prosthetists and engineers.
Reflects on developments in noninvasive electromyography, and includes advances and applications in signal detection, processing and interpretation Addresses EMG imaging technology together with the issue of decomposition of surface EMG Includes advanced single and multi-channel techniques for information extraction from surface EMG signals Presents the analysis and information extraction of surface EMG at various scales, from motor units to the concept of muscle synergies.
Neuromodulation will be the first comprehensive and in-depth reference textbook covering all aspects of the rapidly growing field of neuromodulation. This book provides a complete discussion of the fundamental principles of neuromodulation and therapies applied to the brain, spinal cord, peripheral nerves, autonomic nerves and various organs. The textbook is highly structured and organized into overarching sections that cover chronic pain, movement disorders, psychiatric disorders, epilepsy, functional electrical stimulation, cardiac, gastrointestinal, genitourinary and organ neuromodulation. The fundamental principles of electricity and infusion, neural tissue interface, biomedical engineering, neuromodulation devices, basic science, neuroanatomy, neurophysiology, imaging and mechanisms are emphasized. In addition to providing details pertaining to the state-of-the-art current practice, innovative and emerging applications are discussed in specific chapters. Finally, the textbook provides specific chapters focusing on the technical aspects of the various neuromodulation procedures as well as technical specifications of various implantable devices. All of the contributors to Neuromodulation represent leading experts in the field. The editors are internationally renowned in their respective fields of neuromodulation, pain management, functional neurosurgery and biomedical engineering. Neuromodulation will be the first and foremost authoritative text on neuromodulation therapies and will establish the gold standard that defines the field for years to come.Key Features - The first comprehensive reference on the emerging field of Neuromodulation - Editors and authors include all leading figures in the field, and the leaders of the International Neuromodulation Society - Over 90 chapters on topics ranging from a layout of the fundamentals (e.g. neuroanatomy, plasticity, bioelectrical effects, infusion therapies), solutions for the biomedical engineering challenges (e.g. materials, how to preserve normal function etc.), to a rundown of the existing applications and their future promise - Over 1200 pages in splendid full color, richly illustrated - Important areas of application include: control of chronic pain delivery of drugs to the nervous system via implanted devices control of epilepsy, Parkinson, etc. functional restoration, e.g. visual, auditory, restoration after stroke, restoration of motor function after traumatic events stimulation of body organs via neural devices (incl. the heart, abdominal organs, genitourinary organs) overview over newly emerging fields - control of obesity, blood pressure, tinnitus, brain injury, neurodegenerative diseases, brain-machine interfaces
Although somatosensory system works in tandem with the motor system in biology, the majority of the prosthetics research and commercial efforts had focused on accommodating movement deficits. With the development of neuroprostheses in the last 15 years, it has become evident that somatosensory input (mainly as touch and proprioception) is essential for motor control, manipulating objects, and embodiment, in addition to its primary role for sensory perception. Somatosensory Feedback for Neuroprosthetics covers all relevant aspects to facilitate learning and doing research and development in the field. To understand the properties of the body to create viable solutions, this book starts with chapters reviewing the basic anatomy, physiology, and psychophysics of the somatosensory system, sensorimotor control, and instrumentation. Some sections are dedicated to invasive (peripheral and central, mainly cortical) and noninvasive (vibrotactile, electrotactile, etc.) approaches. Final chapters cover future technologies such as novel sensors and electrodes, safety, and clinical testing, and help to make up future prospects for this field with an emphasis on development and end use. With contributions from renowned experts, the contents include their recent findings and technical details necessary to understand those findings. Provides a concise review of the somatosensory system and latest advances in the use of somatosensory feedback for neuroprosthetics Analyzes many approaches to somatosensory feedback Provides the most detailed work on somatosensory neuroprostheses, their development, and applications in real life work
Based on a foundation of science and empirical observation, engineering research and design has brought science fiction into science fact. The convergence of neuroscience and technology is facilitating the development of therapies that not long ago would have seemed unimaginable, if not impossible. With contributions from pioneers in industry, acad
The book reports on advanced topics in the areas of neurorehabilitation research and practice. It focuses on new methods for interfacing the human nervous system with electronic and mechatronic systems to restore or compensate impaired neural functions. Importantly, the book merges different perspectives, such as the clinical, neurophysiological, and bioengineering ones, to promote, feed and encourage collaborations between clinicians, neuroscientists and engineers. Based on the 2016 International Conference on Neurorehabilitation (ICNR 2016) held on October 18-21, 2016, in Segovia, Spain, this book covers various aspects of neurorehabilitation research and practice, including new insights into biomechanics, brain physiology, neuroplasticity, and brain damages and diseases, as well as innovative methods and technologies for studying and/or recovering brain function, from data mining to interface technologies and neuroprosthetics. In this way, it offers a concise, yet comprehensive reference guide to neurosurgeons, rehabilitation physicians, neurologists, and bioengineers. Moreover, by highlighting current challenges in understanding brain diseases as well as in the available technologies and their implementation, the book is also expected to foster new collaborations between the different groups, thus stimulating new ideas and research directions.
Over the last century,medicine has come out of theblack bag and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiolog