Interspecific and Intraspecific Variation in Picea Engelmannii and Its Congeneric Cohorts
Author: G. E. Rehfeldt
Publisher:
Published: 2004
Total Pages: 24
ISBN-13:
DOWNLOAD EBOOKA series of common garden studies of 336 populations representing Picea engelmannii, P. pungens, P. glauca, P. mexicana, and P. chihuahuana provided as many as 13 growth and morphologic characters pertinent to biosystematics and genecology. Canonical discriminant analyses discretely segregated populations of P. pungens and P. chihuahuana while positioning P. engelmannii populations along a continuum anchored by Southwestern United States populations at one extreme and those classified as hybrids of P.engelmannii with P. glauca on the other. A population of P. mexicana was closely aligned with Southwest populations of P. engelmannii, while populations of P. glauca were intermixed with and peripheral to those identified as hybrid. While consistent with most taxonomic treatments of these taxa, the analyses nonetheless suggested that Southwestern United States populations should be considered as a variety of P. engelmannii that most likely should include P. mexicana. Genecological analyses detected ample genetic variation among the 295 populations in the P. engelmannii complex. The analyses demonstrated that populations were distributed along clines driven primarily by the winter temperature regime of the provenance. For northern populations, summer temperatures also became a key factor in accounting for genetic differences among populations. Analyses also detected clines for the 19 P. pungens and 23 P. glauca populations. An assessment of the effects of global warming according to the IS92a scenario of two general circulation models demonstrated for the current century: (1) an increasingly favorable climate for P. pungrens as its distribution moves upward in elevation throughout much of the Great Basin, Colorado Rockies, and mountain islands of the Southwest; (2) a widespread reduction in the areal extent of P. engelmannii in the inland Northwestern United States to the extent that Picea may become rare in the local flora; (3) extirpation of P. glauca from the Black Hills and Cypress Hills; and (4) a widespread redistribution of genotypes across the landscape as contemporary populations adjust genetically to change.