Interplanetary Medium Data Book, Supplement 5, 1988-1993

Interplanetary Medium Data Book, Supplement 5, 1988-1993

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-25

Total Pages: 312

ISBN-13: 9781724263506

DOWNLOAD EBOOK

This publication represents an extension of the series of Interplanetary Medium Data Books and supplements that have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field and plasma data from the IMP 8 spacecraft for 1988 through the end of 1993. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1988-1993 data as for the earlier data. Owing to a combination of non-continuity of IMP 8 telemetry acquisition and IMP's being out of the solar wind for about 40 percent of its orbit, the annual solar wind coverage for 1988-1993 is 40 plus or minus 5 percent. The plots and listings of this supplement are in essentially the same format as in previous supplements. Days for which neither IMF nor plasma data were available for any hours are omitted from the listings. King, Joseph H. and Papitashvili, Natalia E. Goddard Space Flight Center NASA-TM-109957, NSSDC/WDC-A-R/S-94-08-SUPPL-5, NAS 1.15:109957 ...


Transport Across the Boundaries of the Magnetosphere

Transport Across the Boundaries of the Magnetosphere

Author: Bengt Hultqvist

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 397

ISBN-13: 9400900457

DOWNLOAD EBOOK

The present volume is the second one in the Space Sciences Series of ISSI (Inter national Space Science Institute) and the October 1997 issue of Space Science Reviews. It contains the proceedings of the first workshop in the ISSI study project on "Source and Loss Processes of Magnetospheric Plasma", which was held at ISSI in Bern on October 1-5, 1996. The participants in the project, the project team, numbered at that time 51, of whom 45 participated in the workshop. The main tasks of the first workshop were to provide a basis for the further work by means of presentation and discussion of those 16 review papers which are pub lished in this volume and to prepare plans for the work of six working groups in the year up to the second workshop in October 1997. The ISSI study project on "Source and Loss Processes of Magnetospheric Plas ma" was selected by ISSI in December 1995 as the first in the solar-terrestrial physics field after consulting a number of groups of senior scientists represent ing the international space physics community at large. The undersigned, Bengt Hultqvist, is the project leader. A Core Group, consisting of two co-chairs for each of six working groups and four ex-officio members from the Space Science Com mittee of ISSI (H. Balsiger, A. Galeev, G. Haerendel, and D. Southwood), con vened at ISSI in March 1996.


Magnetic Helicity in Space and Laboratory Plasmas

Magnetic Helicity in Space and Laboratory Plasmas

Author: Michael R. Brown

Publisher: American Geophysical Union

Published: 1999-01-26

Total Pages: 324

ISBN-13:

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 111. Using the concept of magnetic helicity, physicists and mathematicians describe the topology of magnetic fields: twisting, writhing, and linkage. Mathematically, helicity is related to linking integrals, which Gauss introduced in the 19th century to describe the paths of asteroids in the sky. In the late 1970s the concept proved to be critical to understand laboratory plasma experiments on magnetic reconnection, dynamos, and magnetic field relaxation. In the late 1980s it proved equally important in understanding turbulence in the solar wind and the interplanetary magnetic field. During the last five years interest in magnetic helicity has grown dramatically in solar physics, and it will continue to grow as observations of vector magnetic fields become increasingly sophisticated.