Collectively, the chapters in this work will provide the reader with novel insight into the inter-relationships of the function of different organelles in the sequences of events that lead to cellular dysfunction and degeneration in the aging human population. The chapters are rich in information for cell and molecular biologists pursuing studies of the different diseases covered. In addition, the clinician will find value in understanding mechanisms underlying age-related disease as such an understanding will lead to novel therapeutic approaches for an array of age-related diseases.
Inter-Organellar Ca2+ Signaling in Health and Disease - Part A, Volume 362, the latest release in the International Review of Cell and Molecular Biology series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the International Review of Cell and Molecular Biology series - Updated release includes the latest information on the topic of Inter-Organellar Ca2+ Signaling in Health and Disease - Part A
International Review of Cell and Molecular Biology reviews and details current advances in cell and molecular biology. The IRCMB series has a worldwide readership, maintaining a high standard by publishing invited articles on important and timely topics that are authored by prominent cell and molecular biologists. The articles published in IRCMB have a high impact and an average cited half-life of 9 years. This great resource ranks high amongst scientific journals dealing with cell biology. - Publishes only invited review articles on selected topics - Authored by established and active cell and molecular biologists and drawn from international sources - Offers a wide range of perspectives on specific subjects
It can be argued that ATP is the most important molecule in cells. Not only is ATP the key energy source for cells, but it is also the source of phosphate groups that are transferred to a variety of substrate proteins via the action of elaborate families of protein kinases. An equally elaborate array of protein phosphatases can remove phosphate groups from proteins. It is now well established that protein phosphorylation is a widely used mechanism for cells to selectively modulate the function of a variety of proteins including enzymes, ion channels and pumps and structural proteins. In this volume of ACAG leading experts describe the evidence that protein phosphorylation is altered in aging and age-related disease. Protein phosphorylation controls fundamental processes such as transcription and translation, regulation of the cell cycle, signalling within and between cells, cell motility, synaptic function and so on. Recent findings are revealing how phosphorylation dependent signalling cascades may control lifespan with a prime example being the insulin-signalling pathway first described in c-elegans and now emerging as an important regulator of lifespan of mammals also. Many of the functional changes that occur during aging such as impaired learning and memory and altered energy metabolism are controlled by protein phosphorylation and it is, therefore, important to understand how mechanisms of protein phosphorylation may either mediate aging or provide adaptive responses that allow successful disease-free aging. The authors in addition to considering the roles of protein phosphorylation in aging describe the evidence that abnormalities in protein phosphorylation contribute to the pathogenesis of major age-related diseases including diabetes, atherosclerosis and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.
Cells, Aging, and Human Disease is the first book to explore aging all the way from genes to clinical application, analyzing the fundamental cellular changes which underlie human age-related disease. With over 4,000 references, this text explores both the fundamental processes of human aging and the tissue-by-tissue pathology, detailing both breaking research and current state-of-the-art clinical interventions in aging and age-related disease. Far from merely sharing a common onset late in the lifespan, age-related diseases are linked by fundamental common characteristics at the genetic and cellular levels. Emphasizing human cell mechanisms, the first section presents and analyzes our current knowledege of telomere biology and cell senescence. In superb academic detail, the text brings the reader up to date on telomere maintenance, telomerase dynamics, and current research on cell senescence--and the general model--cell senescence as the central component in human senescence and cancer. For each human malignancy, the chapter reviews and analyzes all available data on telomeres and telomerase, as well as summarizing current work on their clinical application in both diagnosis and cancer therapy. The second edition, oriented by organs and tissues, explores the actual physiological impact of cell senescence and aging on clinical disease. After a summary of the literature on early aging syndromes--the progerias--the text reviews aging diseases (Alzheimer's dementia, osteoarthritis, atherosclerosis, immune aging, presbyopia, sarcopenia, etc.) in the context of the tissues in which they occur. Each of the ten clinical chapters--skin, cardiovascular system, bone and joints, hematopoetic and immune systems, endocrine, CNS, renal, muscle, GI, and eyes--examines what we know of their pathology, the role of cell sensescence, and medical interventions, both current and potential.
Recent Events in the Psychology of Aging documents the successful integration of aging into the mainstream of psychology. Leading psychologists present overviews of the key issues and research findings on mainstream topics. These include cognitive neuroscience, visual attention, learning, memory and cognition, as well as personality and happiness. The intersection of aging content with mainstream psychology is also prominent in the areas of emotions, personality, and social psychology as seen in the chapters on subjective well-being, emotional development, self-esteem and personality trajectories.The seven chapters of this book offer information on such topics as: the seven sins of memory, categorizing the common breakdowns of memory in everyday life and the special breakdown of sins that increase with aging; problems with attention and learning; and offers answers to questions such as do emotions get blunted with age; do older people focus more on positive feelings; and the age old question of whether older people are happier than younger people is given in the chapter on the evolving concept of subjective well-being and the multifaceted nature of happiness. Questions about what occurs to one's self-esteem and personality are also masterfully discussed and the answers may be surprising. The concluding seventh chapter provides a cultural lens on the biopsychosocial study of aging.
This is the first book to assemble the leading researchers in the field of LRRK2 biology and neurology and provide a snapshot of the current state of knowledge, encompassing all major aspects of its function and dysfunction. The contributors are experts in cell biology and physiology, neurobiology, and medicinal chemistry, bringing a multidisciplinary perspective on the gene and its role in disease. The book covers the identification of LRRK2 as a major contributor to the pathogenesis of Parkinson's Disease. It also discusses the current state of the field after a decade of research, putative normal physiological roles of LRRK2, and the various pathways that have been identified in the search for the mechanism(s) of its induction of neurodegeneration.
Ageing is of perennial interest as a universal feature in all human societies. The genetic background and biochemical bases of ageing processes are currently being revealed in unprecedented detail. It is emerging that one of the main hurdles to be overcome in achieving a long and healthy lifespan is the maintenance of a properly functioning immune system. The main cause of death in people who have achieved "successful ageing" (which mostly means not having succumbed to cancer or cardiovascular disease) is infectious disease, caused by immunosenescence. This book contains chapters by many of the leaders in the field of immune-related issues in ageing and remediation.
Experts in the fields of energy metabolism, aging and oxidative stress provide an integrated view of how mechanisms involved in regulating energy metabolism are linked to fundamental processes of aging including cellular stress resistance and free radical production. During evolution signal transduction pathways and organ systems have been optimised for the efficient seeking, ingestion, storing and using of energy. These signalling pathways play prominent roles in lifespan determination with insulin and related signalling pathways being prime examples. The authors consider how lifespan and healthspan can be extended through knowledge of energy metabolism with the experimental model of dietary restriction being one example. The information in this volume of ACAG will foster novel approaches and experiments for further understanding the roles of energy metabolism in aging and disease.
The book describes the mechanisms involved in the maintenance of neuroendocrine-immune interactions in ageing. The lack of this maintenance leads to the appearance of age-related diseases (cancer, infections, dementia) and subsequent disability. The capacity of some hormones or nutritional factors in restoring and remodelling the neuroendocrine-immune response during ageing is reported presenting possible new anti-ageing strategies in order to reach healthy ageing and longevity