Forty classroom-ready science teaching and learning activities for elementary and middle school teachers Grounded in theory and best-practices research, this practical text provides elementary and middle school teachers with 40 place-based activities that will help them to make science learning relevant to their students. This text provides teachers with both a rationale and a set of strategies and activities for teaching science in a local context to help students engage with science learning and come to understand the importance of science in their everyday lives.
The Sourcebook for Teaching Science is a unique, comprehensive resource designed to give middle and high school science teachers a wealth of information that will enhance any science curriculum. Filled with innovative tools, dynamic activities, and practical lesson plans that are grounded in theory, research, and national standards, the book offers both new and experienced science teachers powerful strategies and original ideas that will enhance the teaching of physics, chemistry, biology, and the earth and space sciences.
An updated edition of the award-winning analysis of the role of race in the classroom features a new author introduction and framing essays by Herbert Kohl and Charles Payne, in an account that shares ideas about how teachers can function as "cultural transmitters" in contemporary schools and communicate more effectively to overcome race-related academic challenges. Original.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
This comprehensive collection of nearly 200 investigations, demonstrations, mini-labs, and other activities uses everyday examples to make physics concepts easy to understand. For quick access, materials are organized into eight units covering Measurement, Motion, Force, Pressure, Energy & Momentum, Waves, Light, and Electromagnetism. Each lesson contains an introduction with common knowledge examples, reproducible pages for students, a "To the Teacher" information section, and a listing of additional applications students can relate to. Over 300 illustrations add interest and supplement instruction.
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
From engaging science experiments, effective role-play scenarios and useful digital technologies through to intriguing Maker spaces, colourful science fairs and community collaboration in your school, there are so many ways that you can be the spark that ignites a passion in students for understanding how the world works. This book takes you through the practical and realistic ways you can teach the kind of science that kids care about Discover how to address students' science misconceptions, teach science with limited resources and ensure primary students can work to the scientific method in fun challenges where they can explore science in meaninfgul ways they'll remember. It's time to reinvigorate your love of teaching and bring about sustained active learning. Your classroom can become a glowing example of how to engage students in STEM and a beacon for the greater community. It's not just about 'teaching'... your job is to inspire