This conference provides a forum for discussion of the advances in the theory and practice of crystallization as it relates to the production of bulk crystalline materials.
Continuous crystallization is an area of intense research, with particular respect to the pharmaceutical industry and fine chemicals. Improvements in continuous crystallization technologies offer chemical industries significant financial gains, through reduced expenditure and operational costs, and consistent product quality. Written by well-known leaders in the field, The Handbook of Continuous Crystallization presents fundamental and applied knowledge, with attention paid to application and scaling up, and the burgeoning area of process intensification. Beginning with concepts around crystallization techniques and control strategies, the reader will learn about experimental methods and computational tools. Case studies spanning fine and bulk chemicals, the pharmaceutical industry, and employing new mathematical tools, put theory into context.
Still the Most Complete, Up-To-Date, and Reliable Reference in the FieldDrying is a highly energy-intensive operation and is encountered in nearly all industrial sectors. With rising energy costs and consumer demands for higher quality dried products, it is increasingly important to be aware of the latest developments in industrial drying technolog
Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes.The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design.Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the fieldCovers all aspects of industrial crystallization in a single, complete volume
Crystallization is an important technique for separation and purification of substances as well as for product design in chemical, pharmaceutical and biotechnological process industries. This ready reference and handbook draws on research work and industrial practice of a large group of experts in the various areas of industrial crystallization processes, capturing the essence of current trends, the markets, design tools and technologies in this key field. Along the way, it outlines trouble free production, provides laboratory controls, analyses case studies and discusses new challenges. First the instrumentation and techniques used to measure the crystal size distribution, the nucleation and solubility points, and the chemical composition of the solid and liquid phase are outlined. Then the main techniques adopted to control industrial crystallizers, starting from fundamental approaches to the most advanced ones, including the multivariable predictive control are described. An overview of the main crystallizer types is given with details of the main control schemes adopted in industry as well as the more suitable sensors and actuators.
Process Systems Engineering brings together the international community of researchers and engineers interested in computing-based methods in process engineering. This conference highlights the contributions of the PSE community towards the sustainability of modern society and is based on the 13th International Symposium on Process Systems Engineering PSE 2018 event held San Diego, CA, July 1-5 2018. The book contains contributions from academia and industry, establishing the core products of PSE, defining the new and changing scope of our results, and future challenges. Plenary and keynote lectures discuss real-world challenges (globalization, energy, environment and health) and contribute to discussions on the widening scope of PSE versus the consolidation of the core topics of PSE. - Highlights how the Process Systems Engineering community contributes to the sustainability of modern society - Establishes the core products of Process Systems Engineering - Defines the future challenges of Process Systems Engineering
Traditionally, fluid mixing and the related multiphase contacting processes have always been regarded as an empirical technology. Many aspects of mixing, dispersing and contacting were related to power draw, but understanding of the phenomena was limited or qualitative at the most. In particular during the last decade, however, plant operation targets have tightened and product specifications have become stricter. The public awareness as to safety and environmental hygiene has increased. The drive towards larger degrees of sustainability in the process industries has urged for lower amounts of solvents and for higher yields and higher selectivities in chemical reactors. All this has resulted in a market pull: the need for more detailed insights in flow phenomena and processes and for better verifiable design and operation methods. Developments in miniaturisation of sensors and circuits as well as in computer technology have rendered leaps possible in computer simulation and animation and in measuring and monitoring techniques. This volume encourages a leap forward in the field of mixing by the current, overwhelming wealth of sophisticated measuring and computational techniques. This leap may be made possible by modern instrumentation, signal and data analysis, field reconstruction algorithms, computational modelling techniques and numerical recipes.
ISCRE 10 Tenth International Symposium on Chemical Reaction Engineering documents the proceedings of the symposium which brought together experts from all over the world to discuss developments in CRE. Efforts were made to cover high added value substances and to encourage papers from industry. Some success was achieved, but there remain significant gaps between Chemists and Chemical Engineers when considering high added value products as well as between researchers and practitioners of CRE. The volume begins with plenary papers covering topics such as challenges in reactor modeling; bioreactor engineering; the design of reaction systems for specialty organic chemicals. This is followed by papers presented during the eight technical sessions. Technical session A focused on the modeling and control of chemical reactions. Technical session B was devoted to studies on biotechnology. Technical session C covered mixing while Technical session D dealt with special reactor systems and chemicals. The papers in Technical session E examined reactions for emission control and recycling. Technical session F covered the safety aspects of CRE. Technical session G focused on the experiments with multiphase reactions while Technical session H dealt with catalytic reactors.
A comprehensive look at existing technologies and processes for continuous manufacturing of pharmaceuticals As rising costs outpace new drug development, the pharmaceutical industry has come under intense pressure to improve the efficiency of its manufacturing processes. Continuous process manufacturing provides a proven solution. Among its many benefits are: minimized waste, energy consumption, and raw material use; the accelerated introduction of new drugs; the use of smaller production facilities with lower building and capital costs; the ability to monitor drug quality on a continuous basis; and enhanced process reliability and flexibility. Continuous Manufacturing of Pharmaceuticals prepares professionals to take advantage of that exciting new approach to improving drug manufacturing efficiency. This book covers key aspects of the continuous manufacturing of pharmaceuticals. The first part provides an overview of key chemical engineering principles and the current regulatory environment. The second covers existing technologies for manufacturing both small-molecule-based products and protein/peptide products. The following section is devoted to process analytical tools for continuously operating manufacturing environments. The final two sections treat the integration of several individual parts of processing into fully operating continuous process systems and summarize state-of-art approaches for innovative new manufacturing principles. Brings together the essential know-how for anyone working in drug manufacturing, as well as chemical, food, and pharmaceutical scientists working on continuous processing Covers chemical engineering principles, regulatory aspects, primary and secondary manufacturing, process analytical technology and quality-by-design Contains contributions from researchers in leading pharmaceutical companies, the FDA, and academic institutions Offers an extremely well-informed look at the most promising future approaches to continuous manufacturing of innovative pharmaceutical products Timely, comprehensive, and authoritative, Continuous Manufacturing of Pharmaceuticals is an important professional resource for researchers in industry and academe working in the fields of pharmaceuticals development and manufacturing.
Process Systems Engineering for Pharmaceutical Manufacturing: From Product Design to Enterprise-Wide Decisions, Volume 41, covers the following process systems engineering methods and tools for the modernization of the pharmaceutical industry: computer-aided pharmaceutical product design and pharmaceutical production processes design/synthesis; modeling and simulation of the pharmaceutical processing unit operation, integrated flowsheets and applications for design, analysis, risk assessment, sensitivity analysis, optimization, design space identification and control system design; optimal operation, control and monitoring of pharmaceutical production processes; enterprise-wide optimization and supply chain management for pharmaceutical manufacturing processes. Currently, pharmaceutical companies are going through a paradigm shift, from traditional manufacturing mode to modernized mode, built on cutting edge technology and computer-aided methods and tools. Such shifts can benefit tremendously from the application of methods and tools of process systems engineering. - Introduces Process System Engineering (PSE) methods and tools for discovering, developing and deploying greener, safer, cost-effective and efficient pharmaceutical production processes - Includes a wide spectrum of case studies where different PSE tools and methods are used to improve various pharmaceutical production processes with distinct final products - Examines the future benefits and challenges for applying PSE methods and tools to pharmaceutical manufacturing