In this, the post-genomic age, our knowledge of biological systems continues to expand and progress. As the research becomes more focused, so too does the data. Genomic research progresses to proteomics and brings us to a deeper understanding of the behavior and function of protein clusters. And now proteomics gives way to neuroproteomics as we beg
This volume discusses the latest mass spectrometry (MS)-based technologies for proteoform identification, characterization, and quantification. Some of the topics covered in this book include sample preparation, proteoform separation, proteoform gas-phase fragmentation, and bioinformatics tools for MS data analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Proteoform Identification: Methods and Protocols is a valuable resource for researchers in both academia and the biopharmaceutical industry who are interested in proteoform analysis using MS.
Approaches to the Purification, Analysis and Characterization of Antibody-Based Therapeutics provides the interested and informed reader with an overview of current approaches, strategies and considerations relating to the purification, analytics and characterization of therapeutic antibodies and related molecules. While there are obviously other books published in and around this subject area, they seem to be either older (c.a. year 2000 publication date) or are more limited in scope. The book will include an extensive bibliography of the published literature in the respective areas covered. It is not, however, intended to be a how-to methods book. - Covers the vital new area of R&D on therapeutic antibodies - Written by leading scientists and researchers - Up-to-date coverage and includes a detailed bibliography
Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution. The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis and modeling. This new standard effectively eliminates the differing methodologies used in studies and creates a unified approach. Readers will learn the advantages and disadvantages of the various techniques discussed, as well as potential difficulties inherent to all steps in the biomarker discovery process. A vital resource for biochemists, biologists, analytical chemists, bioanalytical chemists, clinical and medical technicians, researchers in pharmaceuticals, and graduate students, Proteomic and Metabolomic Approaches to Biomarker Discovery provides the information needed to reduce clinical error in the execution of research. - Describes the use of biomarkers to reduce clinical errors in research - Includes techniques from a range of biomarker discoveries - Covers all steps involved in biomarker discovery, from study design to study execution
This long-awaited first guide to sample preparation for proteomics studies overcomes a major bottleneck in this fast growing technique within the molecular life sciences. By addressing the topic from three different angles -- sample, method and aim of the study -- this practical reference has something for every proteomics researcher. Following an introduction to the field, the book looks at sample preparation for specific techniques and applications and finishes with a section on the preparation of sample types. For each method described, a summary of the pros and cons is given, as well as step-by-step protocols adaptable to any specific proteome analysis task.
This monograph reviews all relevant technologies based on mass spectrometry that are used to study or screen biological interactions in general. Arranged in three parts, the text begins by reviewing techniques nowadays almost considered classical, such as affinity chromatography and ultrafiltration, as well as the latest techniques. The second part focusses on all MS-based methods for the study of interactions of proteins with all classes of biomolecules. Besides pull down-based approaches, this section also emphasizes the use of ion mobility MS, capture-compound approaches, chemical proteomics and interactomics. The third and final part discusses other important technologies frequently employed in interaction studies, such as biosensors and microarrays. For pharmaceutical, analytical, protein, environmental and biochemists, as well as those working in pharmaceutical and analytical laboratories.
Proteomic Profiling and Analytical Chemistry: The Crossroads, Second Edition helps scientists without a strong background in analytical chemistry to understand principles of the multistep proteomic experiment necessary for its successful completion. It also helps researchers who do have an analytical chemistry background to break into the proteomics field. Highlighting points of junction between proteomics and analytical chemistry, this resource links experimental design with analytical measurements, data analysis, and quality control. This targeted point of view will help both biologists and chemists to better understand all components of a complex proteomic study. The book provides detailed coverage of experimental aspects such as sample preparation, protein extraction and precipitation, gel electrophoresis, microarrays, dynamics of fluorescent dyes, and more. The key feature of this book is a direct link between multistep proteomic strategy and quality control routinely applied in analytical chemistry. This second edition features a new chapter on SWATH-MS, substantial updates to all chapters, including proteomic database search and analytical quantification, expanded discussion of post-hoc statistical tests, and additional content on validation in proteomics. - Covers the analytical consequences of protein and peptide modifications that may have a profound effect on how and what researchers actually measure - Includes practical examples illustrating the importance of problems in quantitation and validation of biomarkers - Helps in designing and executing proteomic experiments with sound analytics
An extensive compilation of articles by leading professionals, this reference explains the fundamental principles of mass spectrometry as they relate to the life sciences. Topics covered include spectroscopy, energetics and mechanisms of peptide fragmentation, electron capture dissociation, ion-ion and ion-molecule reactions, reaction dynamics, collisional activation, soft-landing, protein structure and interactions, thermochemistry, and more. The book empowers readers to develop new ways of using these techniques.
Breaking down large biomolecules into fragments in a controlled manner is key to modern biomolecular mass spectrometry. This book is a high-level introduction, as well as a reference work for experienced users, to ECD, ETD, EDD, NETD, UVPD, SID, and other advanced fragmentation methods. It provides a comprehensive overview of their history, mechanisms, instrumentation, and key applications. With contributions from leading experts, this book will act as an authoritative guide to these methods. Aimed at postgraduate and professional researchers, mainly in academia, but also in industry, it can be used as supplementary reading for advanced students on mass spectrometry or analytical (bio)chemistry courses.
Plant Proteomics highlights rapid progress in this field, with emphasis on recent work in model plant species, sub-cellular organelles, and specific aspects of the plant life cycle such as signaling, reproduction and stress physiology. Several chapters present a detailed look at diverse integrated approaches, including advanced proteomic techniques combined with functional genomics, bioinformatics, metabolomics and molecular cell biology, making this book a valuable resource for a broad spectrum of readers.