Intermittency and Self-Organisation in Turbulence and Statistical Mechanics

Intermittency and Self-Organisation in Turbulence and Statistical Mechanics

Author: Eun-jin Kim

Publisher:

Published: 2019

Total Pages: 298

ISBN-13: 9783039211098

DOWNLOAD EBOOK

There is overwhelming evidence, from laboratory experiments, observations, and computational studies, that coherent structures can cause intermittent transport, dramatically enhancing transport. A proper description of this intermittent phenomenon, however, is extremely difficult, requiring a new non-perturbative theory, such as statistical description. Furthermore, multi-scale interactions are responsible for inevitably complex dynamics in strongly non-equilibrium systems, a proper understanding of which remains a main challenge in classical physics. As a remarkable consequence of multi-scale interaction, a quasi-equilibrium state (the so-called self-organisation) can however be maintained. This special issue aims to present different theories of statistical mechanics to understand this challenging multiscale problem in turbulence. The 14 contributions to this Special issue focus on the various aspects of intermittency, coherent structures, self-organisation, bifurcation and nonlocality. Given the ubiquity of turbulence, the contributions cover a broad range of systems covering laboratory fluids (channel flow, the Von Kármán flow), plasmas (magnetic fusion), laser cavity, wind turbine, air flow around a high-speed train, solar wind and industrial application.


Intermittency in Turbulent Flows

Intermittency in Turbulent Flows

Author: J. C. Vassilicos

Publisher: Cambridge University Press

Published: 2001

Total Pages: 292

ISBN-13: 9780521792219

DOWNLOAD EBOOK

This volume was the product of a workshop held at the Newton Institute in Cambridge, and examines turbulence, intermittency, nonlinear dynamics and fluid mechanics.


Paolo Grigolini and 50 Years of Statistical Physics

Paolo Grigolini and 50 Years of Statistical Physics

Author: Bruce J. West

Publisher: Cambridge Scholars Publishing

Published: 2023-04-03

Total Pages: 331

ISBN-13: 1527502236

DOWNLOAD EBOOK

This volume celebrates the over fifty-year career in non-equilibrium statistical physics of Professor Paolo Grigolini of the Center for Nonlinear Science at the University of North Texas. It begins by positioning Grigolini in a five-dimensional science-personality space with the following axes: Sleeper, Keeper, Leaper, Creeper and Reaper. This introduction to the person is followed by a sequence of papers in the various areas of science where his work has had impact, including subtle questions concerned with the connection between classical and quantum systems; a two-level atom coupled to a radiation field; classical probability calculus; anomalous diffusion that is Brownian yet non-Gaussian; a new method for detecting scaling in time series; and the effect of strong Anderson localization on ultrasound transmission, among other topics.


An Informal Introduction to Turbulence

An Informal Introduction to Turbulence

Author: A. Tsinober

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 344

ISBN-13: 030648384X

DOWNLOAD EBOOK

To Turbulence by ARKADY TSINOBER Department of Fluid Mechanics, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 0-306-48384-X Print ISBN: 1-4020-0110-X ©2004 Kluwer Academic Publishers NewYork, Boston, Dordrecht, London, Moscow Print ©2001 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline. com and Kluwer's eBookstoreat: http://ebooks. kluweronline. com TO My WITS TABLE OF CONTENTS 1 INTRODUCTION 1 Brief history 1 1. 1 1. 2 Nature and major qualitative universal features of turbulent flows 2 1. 2. 1 Representative examples of turbulent flows 2 1. 2. 2 In lieu of definition: major qualitative universal f- tures of turbulent flows 15 1. 3 Why turbulence is so impossibly difficult? The three N's 19 On the Navier-Stokes equations 19 1. 3. 1 1. 3. 2 On the nature of the problem 21 1. 3. 3 Nonlinearity 22 1. 3. 4 Noninegrability 22 Nonlocality 1. 3. 5 23 1. 3. 6 On physics of turbulence 24 1. 3. 7 On statistical theories 24 1. 4 Outline of the following material 25 1. 5 In lieu of summary 26 2 ORIGINS OF TURBULENCE 27 2. 1 Instability 27 2. 2 Transition to turbulence versus routes to chaos 29 2.


Turbulence and Self-Organization

Turbulence and Self-Organization

Author: Mikhail Ya Marov

Publisher: Springer Science & Business Media

Published: 2013-01-16

Total Pages: 682

ISBN-13: 1461451558

DOWNLOAD EBOOK

The book deals with the development of continual models of turbulent natural media. Such models serve as a ground for the statement and numerical evaluation of the key problems of the structure and evolution of the numerous astrophysical and geophysical objects. The processes of ordering (self-organization) in an originally chaotic turbulent medium are addressed and treated in detail with the use of irreversible thermodynamics and stochastic dynamics approaches which underlie the respective models. Different examples of ordering set up in the natural environment and outer space are brought and thoroughly discussed, the main focus being given to the protoplanetary discs formation and evolution.


Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows

Author: P. A. Durbin

Publisher: John Wiley & Sons

Published: 2011-06-28

Total Pages: 347

ISBN-13: 1119957524

DOWNLOAD EBOOK

Providing a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.


IUTAM Symposium on Geometry and Statistics of Turbulence

IUTAM Symposium on Geometry and Statistics of Turbulence

Author: T. Kambe

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 400

ISBN-13: 9401596387

DOWNLOAD EBOOK

This volume contains the papers presented at the IUTAM Symposium on Geometry and Statistics of Turbulence, held in November 1999, at the Shonan International Village Center, Hayama (Kanagawa-ken), Japan. The Symposium was proposed in 1996, aiming at organizing concen trated discussions on current understanding of fluid turbulence with empha sis on the statistics and the underlying geometric structures. The decision of the General Assembly of International Union of Theoretical and Applied Mechanics (IUTAM) to accept the proposal was greeted with enthusiasm. Turbulence is often characterized as having the properties of mixing, inter mittency, non-Gaussian statistics, and so on. Interest is growing recently in how these properties are related to formation and evolution of struc tures. Note that the intermittency is meant for passive scalars as well as for turbulence velocity or rate of dissipation. There were eighty-eight participants in the Symposium. They came from thirteen countries, and fifty-seven papers were presented. The presenta tions comprised a wide variety of fundamental subjects of mathematics, statistical analyses, physical models as well as engineering applications. Among the subjects discussed are (a) Degree of self-similarity in cascade, (b) Fine-scale structures and degree of Markovian property in turbulence, (c) Dynamics of vorticity and rates of strain, (d) Statistics associated with vortex structures, (e) Topology, structures and statistics of passive scalar advection, (f) Partial differential equations governing PDFs of velocity in crements, (g) Thermal turbulences, (h) Channel and pipe flow turbulences, and others.