Interference Avoidance Methods for Wireless Systems is an introduction to wireless techniques useful for uncoordinated unlicensed band systems, which use adaptive transmitters and receivers. The book provides a comprehensive theoretical analysis of interference avoidance algorithms in a general signal space framework that applies to a wide range of wireless communication scenarios with multiple users accessing the same communication resources. This book will be of interest to researchers, graduate students, and engineers working in the area of wireless communications as well as to technology policy makers working on radio frequency spectrum allocation. The book can also be used as a supplement text to advanced topics graduate courses in the area of wireless communication systems.
A Timely Exploration of Multiuser Detection in Wireless Networks During the past decade, the design and development of current and emerging wireless systems have motivated many important advances in multiuser detection. This book fills an important need by providing a comprehensive overview of crucial recent developments that have occurred in this active research area. Each chapter is contributed by noted experts and is meant to serve as a self-contained treatment of the topic. Coverage includes: Linear and decision feedback methods Iterative multiuser detection and decoding Multiuser detection in the presence of channel impairments Performance analysis with random signatures and channels Joint detection methods for MIMO channels Interference avoidance methods at the transmitter Transmitter precoding methods for the MIMO downlink This book is an ideal entry point for exploring ongoing research in multiuser detection and for learning about the field's existing unsolved problems and issues. It is a valuable resource for researchers, engineers, and graduate students who are involved in the area of digital communications.
A Timely Exploration of Multiuser Detection in Wireless Networks During the past decade, the design and development of current and emerging wireless systems have motivated many important advances in multiuser detection. This book fills an important need by providing a comprehensive overview of crucial recent developments that have occurred in this active research area. Each chapter is contributed by noted experts and is meant to serve as a self-contained treatment of the topic. Coverage includes: Linear and decision feedback methods Iterative multiuser detection and decoding Multiuser detection in the presence of channel impairments Performance analysis with random signatures and channels Joint detection methods for MIMO channels Interference avoidance methods at the transmitter Transmitter precoding methods for the MIMO downlink This book is an ideal entry point for exploring ongoing research in multiuser detection and for learning about the field's existing unsolved problems and issues. It is a valuable resource for researchers, engineers, and graduate students who are involved in the area of digital communications.
This proceedings is a representation of decades of reasearch, teaching and application in the field. Image Processing, Fusion and Information Technology areas, Digital radio Communication, Wimax, Electrical engg, VLSI approach to processor design, embedded systems design are dealt in detail through models and illustrative techniques.
The application of mathematical analysis to wireless networks has met with limited success, due to the complexity of mobility and traffic models, coupled with the dynamic topology and the unpredictability of link quality that characterize such networks. The ability to model individual, independent decision makers whose actions potentially affect all other decision makers makes game theory particularly attractive to analyze the performance of ad hoc networks. Game theory is a field of applied mathematics that describes and analyzes interactive decision situations. It consists of a set of analytical tools that predict the outcome of complex interactions among rational entities, where rationality demands a strict adherence to a strategy based on perceived or measured results. In the early to mid-1990's, game theory was applied to networking problems including flow control, congestion control, routing and pricing of Internet services. More recently, there has been growing interest in adopting game-theoretic methods to model today's leading communications and networking issues, including power control and resource sharing in wireless and peer-to-peer networks. This work presents fundamental results in game theory and their application to wireless communications and networking. We discuss normal-form, repeated, and Markov games with examples selected from the literature. We also describe ways in which learning can be modeled in game theory, with direct applications to the emerging field of cognitive radio. Finally, we discuss challenges and limitations in the application of game theory to the analysis of wireless systems. We do not assume familiarity with game theory. We introduce major game theoretic models and discuss applications of game theory including medium access, routing, energy-efficient protocols, and others. We seek to provide the reader with a foundational understanding of the current research on game theory applied to wireless communications and networking.
Data networking now plays a major role in everyday life and new applications continue to appear at a blinding pace. Yet we still do not have a sound foundation for designing, evaluating and managing these networks. This book covers topics at the intersection of algorithms and networking. It builds a complete picture of the current state of research on Next Generation Networks and the challenges for the years ahead. Particular focus is given to evolving research initiatives and the architecture they propose and implications for networking. Topics: Network design and provisioning, hardware issues, layer-3 algorithms and MPLS, BGP and Inter AS routing, packet processing for routing, security and network management, load balancing, oblivious routing and stochastic algorithms, network coding for multicast, overlay routing for P2P networking and content delivery. This timely volume will be of interest to a broad readership from graduate students to researchers looking to survey recent research its open questions.
RESOURCE MANAGEMENT IN ADVANCED WIRELESS NETWORKS Written and edited by a team of experts in the field, this exciting new volume provides a comprehensive exploration of cutting-edge technologies and trends in managing resources in advanced wireless networks. This groundbreaking new volume from Wiley-Scrivener discusses the challenges that are emerging while managing the resources in various wireless networking technologies. Initially, the evolution of wireless networking technologies is presented, focusing on the advantages of improving data rates and data reliability. The book then goes through the various architecture designs based on the network paradigms, along with the evolution of networks based on the trends in the telecommunication industry. Various salient features are highlighted in managing resources, and the role of routing strategies is addressed with regard to real-time applications. Covering resource management in wireless networks, various industries are covered, such as healthcare and financial services, but the ideas are useful across many industries. Whether for the veteran engineer, industry professional, or student, this is a must- have for any library.
Since the early 1990s, the wireless communications field has witnessed explosive growth. The wide range of applications and existing new technologies nowadays stimulated this enormous growth and encouraged wireless applications. The new wireless networks will support heterogeneous traffic, consisting of voice, video, and data (multimedia). This necessitated looking at new wireless generation technologies and enhance its capabilities. This includes new standards, new levels of Quality of Service (QoS), new sets of protocols and architectures, noise reduction, power control, performance enhancement, link and mobility management, nomadic and wireless networks security, and ad-hoc architectures. Many of these topics are covered in this textbook. The aim of this book is research and development in the area of broadband wireless communications and sensor networks. It is intended for researchers that need to learn more and do research on these topics. But, it is assumed that the reader has some background about wireless communications and networking. In addition to background in each of the chapters, an in-depth analysis is presented to help our readers gain more R&D insights in any of these areas. The book is comprised of 22 chapters, written by a group of well-known experts in their respective fields. Many of them have great industrial experience mixed with proper academic background.
This book brings together papers presented at the 4th International Conference on Communications, Signal Processing, and Systems, which provides a venue to disseminate the latest developments and to discuss the interactions and links between these multidisciplinary fields. Spanning topics ranging from Communications, Signal Processing and Systems, this book is aimed at undergraduate and graduate students in Electrical Engineering, Computer Science and Mathematics, researchers and engineers from academia and industry as well as government employees (such as NSF, DOD, DOE, etc).
Accessible introduction to the theoretical foundations of modern coding theory Including numerous applications to wireless transmission systems The author is famous in the field of coding and wireless communications for his work in the area of faded channels & communcations.