This book presents a collection of high-quality, peer-reviewed research papers from the 6th International Conference on Information System Design and Intelligent Applications (INDIA 2019), held at Lendi Institute of Engineering & Technology, India, from 1 to 2 November 2019. It covers a wide range of topics in computer science and information technology, including data mining and data warehousing, high-performance computing, parallel and distributed computing, computational intelligence, soft computing, big data, cloud computing, grid computing and cognitive computing.
This comprehensive treatment of the field of intelligent systems is written by two of the foremost authorities in the field. The authors clearly examine the theoretical and practical aspects of these systems. The book focuses on the NIST-RCS (Real-time Control System) model that has been used recently in the Mars Rover.
This book describes recent advances in the use of fuzzy logic for the design of hybrid intelligent systems based on nature-inspired optimization and their applications in areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. Based on papers presented at the North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2017), held in Cancun, Mexico from 16 to 18 October 2017, the book is divided into nine main parts, the first of which first addresses theoretical aspects, and proposes new concepts and algorithms based on type-1 fuzzy systems. The second part consists of papers on new concepts and algorithms for type-2 fuzzy systems, and on applications of type-2 fuzzy systems in diverse areas, such as time series prediction and pattern recognition. In turn, the third part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques describing new nature-inspired optimization algorithms that use fuzzy dynamic adaptation of parameters. The fourth part presents emergent intelligent models, which range from quantum algorithms to cellular automata. The fifth part explores applications of fuzzy logic in diverse areas of medicine, such as the diagnosis of hypertension and heart diseases. The sixth part describes new computational intelligence algorithms and their applications in different areas of intelligent control, while the seventh examines the use of fuzzy logic in different mathematic models. The eight part deals with a diverse range of applications of fuzzy logic, ranging from environmental to autonomous navigation, while the ninth covers theoretical concepts of fuzzy models
Traditional artificial intelligence (AI) techniques are based around mathematical techniques of symbolic logic, with programming in languages such as Prolog and LISP invented in the 1960s. These are referred to as "crisp" techniques by the soft computing community. The new wave of AI methods seeks inspiration from the world of biology, and is being used to create numerous real-world intelligent systems with the aid of soft computing tools. These new methods are being increasingly taught at the upper end of the curriculum, sometimes as an adjunct to traditional AI courses, and sometimes as a replacement for them. Where a more radical approach is taken and the course is being taught at an introductory level, we have recently published Negnevitsky's book. Karray and Silva will be suitable for the majority of courses which will be found at an advanced level. Karray and de Silva cover the problem of control and intelligent systems design using soft-computing techniques in an integrated manner. They present both theory and applications, including industrial applications, and the book contains numerous worked examples, problems and case studies. Covering the state-of-the-art in soft-computing techniques, the book gives the reader sufficient knowledge to tackle a wide range of complex systems for which traditional techniques are inadequate.
Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems
"The objective of the book is to introduce and bring together well-known circuit design aspects, as well as to cover up-to-date outcomes of theoretical studies in decision-making, biologically-inspired, and artificial intelligent learning techniques"--Provided by publisher.
Intelligent Computing for Interactive System Design provides a comprehensive resource on what has become the dominant paradigm in designing novel interaction methods, involving gestures, speech, text, touch and brain-controlled interaction, embedded in innovative and emerging human-computer interfaces. These interfaces support ubiquitous interaction with applications and services running on smartphones, wearables, in-vehicle systems, virtual and augmented reality, robotic systems, the Internet of Things (IoT), and many other domains that are now highly competitive, both in commercial and in research contexts. This book presents the crucial theoretical foundations needed by any student, researcher, or practitioner working on novel interface design, with chapters on statistical methods, digital signal processing (DSP), and machine learning (ML). These foundations are followed by chapters that discuss case studies on smart cities, brain-computer interfaces, probabilistic mobile text entry, secure gestures, personal context from mobile phones, adaptive touch interfaces, and automotive user interfaces. The case studies chapters also highlight an in-depth look at the practical application of DSP and ML methods used for processing of touch, gesture, biometric, or embedded sensor inputs. A common theme throughout the case studies is ubiquitous support for humans in their daily professional or personal activities. In addition, the book provides walk-through examples of different DSP and ML techniques and their use in interactive systems. Common terms are defined, and information on practical resources is provided (e.g., software tools, data resources) for hands-on project work to develop and evaluate multimodal and multi-sensor systems. In a series of in-chapter commentary boxes, an expert on the legal and ethical issues explores the emergent deep concerns of the professional community, on how DSP and ML should be adopted and used in socially appropriate ways, to most effectively advance human performance during ubiquitous interaction with omnipresent computers. This carefully edited collection is written by international experts and pioneers in the fields of DSP and ML. It provides a textbook for students and a reference and technology roadmap for developers and professionals working on interaction design on emerging platforms.
The deployment of intelligent systems to tackle complex processes is now commonplace in many fields from medicine and agriculture to industry and tourism. This book presents scientific contributions from the 1st International Conference on Applications of Intelligent Systems (APPIS 2018) held at the Museo Elder in Las Palmas de Gran Canaria, Spain, from 10 to 12 January 2018. The aim of APPIS 2018 was to bring together scientists working on the development of intelligent computer systems and methods for machine learning, artificial intelligence, pattern recognition, and related techniques with an emphasis on their application to various problems. The 34 peer-reviewed papers included here cover an extraordinarily wide variety of topics – everything from semi-supervised learning to matching electro-chemical sensor information with human odor perception – but what they all have in common is the design and application of intelligent systems and their role in tackling diverse and complex challenges. The book will be of particular interest to all those involved in the development and application of intelligent systems.
The third edition of this bestseller examines the principles of artificial intelligence and their application to engineering and science, as well as techniques for developing intelligent systems to solve practical problems. Covering the full spectrum of intelligent systems techniques, it incorporates knowledge-based systems, computational intelligence, and their hybrids. Using clear and concise language, Intelligent Systems for Engineers and Scientists, Third Edition features updates and improvements throughout all chapters. It includes expanded and separated chapters on genetic algorithms and single-candidate optimization techniques, while the chapter on neural networks now covers spiking networks and a range of recurrent networks. The book also provides extended coverage of fuzzy logic, including type-2 and fuzzy control systems. Example programs using rules and uncertainty are presented in an industry-standard format, so that you can run them yourself. The first part of the book describes key techniques of artificial intelligence—including rule-based systems, Bayesian updating, certainty theory, fuzzy logic (types 1 and 2), frames, objects, agents, symbolic learning, case-based reasoning, genetic algorithms, optimization algorithms, neural networks, hybrids, and the Lisp and Prolog languages. The second part describes a wide range of practical applications in interpretation and diagnosis, design and selection, planning, and control. The author provides sufficient detail to help you develop your own intelligent systems for real applications. Whether you are building intelligent systems or you simply want to know more about them, this book provides you with detailed and up-to-date guidance. Check out the significantly expanded set of free web-based resources that support the book at: http://www.adrianhopgood.com/aitoolkit/
In this book, we focus on intelligent systems that are based on the integration of expert systems, hypermedia, and data-base technologies, for together they offer a rich environment for creating computer applications that can increase productivity enormously and act as intelligent assistants. Though hypermedia and expert systems technologies date back thirty or more years as independent technologies, it has only been in the last three years that their paths have fully converged, offering system developers a flexible environment that takes advantage of existing information and data. The combination of hypermedia and expert systems is quite attractive as it leads to overall increases in productivity.