Applied Mechanics of Solids

Applied Mechanics of Solids

Author: Allan F. Bower

Publisher: CRC Press

Published: 2009-10-05

Total Pages: 820

ISBN-13: 1439802483

DOWNLOAD EBOOK

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o


Elasticity

Elasticity

Author: Martin H. Sadd

Publisher: Elsevier

Published: 2010-08-04

Total Pages: 474

ISBN-13: 008047747X

DOWNLOAD EBOOK

Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of


Functional Integration

Functional Integration

Author: Jean-Pierre Antoine

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 354

ISBN-13: 1461570352

DOWNLOAD EBOOK

The idea of the workshop on Functional Integration, Theory and Applications, held in Louvain-Ia-Neuve from November 6 to 9 1979, was to put in close and informal contact, during a few days, active workers in the field. There is no doubt now that functional integration is a tool that is being applied in all branches of modern physics. Since the earlier works of Dirac and Feynman enormous progress has been made, but unfortunately we lack still a unifying and rigo rous mathematical framework to account for all the situations in which one is interested. We are then in presence of a rapid ly changing field in which new achievements, proposals, and points of view are the normal pattern. Considering this state of affairs we have decided to order the articles starting from the more fundamental and ambitious from the point of view of mathematical rigour, followed by ar ticles in which the main interest is the application to con crete physical situations. It is obvious that this ordering should not be taken too seriously since in many cases there will be an interplay of both objects.


Pure and Applied Science Books, 1876-1982

Pure and Applied Science Books, 1876-1982

Author:

Publisher:

Published: 1982

Total Pages: 1374

ISBN-13:

DOWNLOAD EBOOK

Over 220,000 entries representing some 56,000 Library of Congress subject headings. Covers all disciplines of science and technology, e.g., engineering, agriculture, and domestic arts. Also contains at least 5000 titles published before 1876. Has many applications in libraries, information centers, and other organizations concerned with scientific and technological literature. Subject index contains main listing of entries. Each entry gives cataloging as prepared by the Library of Congress. Author/title indexes.


Advances in Computational Dynamics of Particles, Materials and Structures

Advances in Computational Dynamics of Particles, Materials and Structures

Author: Jason Har

Publisher: John Wiley & Sons

Published: 2012-07-25

Total Pages: 806

ISBN-13: 1119966922

DOWNLOAD EBOOK

Computational methods for the modeling and simulation of the dynamic response and behavior of particles, materials and structural systems have had a profound influence on science, engineering and technology. Complex science and engineering applications dealing with complicated structural geometries and materials that would be very difficult to treat using analytical methods have been successfully simulated using computational tools. With the incorporation of quantum, molecular and biological mechanics into new models, these methods are poised to play an even bigger role in the future. Advances in Computational Dynamics of Particles, Materials and Structures not only presents emerging trends and cutting edge state-of-the-art tools in a contemporary setting, but also provides a unique blend of classical and new and innovative theoretical and computational aspects covering both particle dynamics, and flexible continuum structural dynamics applications. It provides a unified viewpoint and encompasses the classical Newtonian, Lagrangian, and Hamiltonian mechanics frameworks as well as new and alternative contemporary approaches and their equivalences in [start italics]vector and scalar formalisms[end italics] to address the various problems in engineering sciences and physics. Highlights and key features Provides practical applications, from a unified perspective, to both particle and continuum mechanics of flexible structures and materials Presents new and traditional developments, as well as alternate perspectives, for space and time discretization Describes a unified viewpoint under the umbrella of Algorithms by Design for the class of linear multi-step methods Includes fundamentals underlying the theoretical aspects and numerical developments, illustrative applications and practice exercises The completeness and breadth and depth of coverage makes Advances in Computational Dynamics of Particles, Materials and Structures a valuable textbook and reference for graduate students, researchers and engineers/scientists working in the field of computational mechanics; and in the general areas of computational sciences and engineering.


Computational Continuum Mechanics

Computational Continuum Mechanics

Author: Ahmed A. Shabana

Publisher: Cambridge University Press

Published: 2011-12-12

Total Pages: 341

ISBN-13: 1139505424

DOWNLOAD EBOOK

This second edition presents the theory of continuum mechanics using computational methods. The text covers a broad range of topics including general problems of large rotation and large deformations and the development and limitations of finite element formulations in solving such problems. Dr Shabana introduces theories on motion kinematics, strain, forces and stresses and goes on to discuss linear and nonlinear constitutive equations, including viscoelastic and plastic constitutive models. General nonlinear continuum mechanics theory is used to develop small and large finite element formulations which correctly describe rigid body motion for use in engineering applications. This second edition features a new chapter that focuses on computational geometry and finite element analysis. This book is ideal for graduate and undergraduate students, professionals and researchers who are interested in continuum mechanics.


Nonlinear Finite Elements for Continua and Structures

Nonlinear Finite Elements for Continua and Structures

Author: Ted Belytschko

Publisher: John Wiley & Sons

Published: 2014-01-07

Total Pages: 834

ISBN-13: 1118632702

DOWNLOAD EBOOK

Nonlinear Finite Elements for Continua and Structures p>Nonlinear Finite Elements for Continua and Structures This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended Finite Element Method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation- density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis Covers many of the material laws used in today’s software and research Introduces advanced topics in nonlinear finite element modelling of continua Introduction of multiresolution continuum theory and XFEM Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must-have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners.


Integral Methods in Science and Engineering

Integral Methods in Science and Engineering

Author: Christian Constanda

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 410

ISBN-13: 1461478286

DOWNLOAD EBOOK

​​Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.​