Integration in Finite Terms

Integration in Finite Terms

Author: Joseph Fels Ritt

Publisher:

Published: 1948

Total Pages: 0

ISBN-13: 9780231915960

DOWNLOAD EBOOK

Gives an account of Liouville's theory of integration in finite terms -- his determination of the form which the integral of an algebraic function must have when the integral can be expressed with the operations of elementary mathematical analysis, carried out a finite number of times -- and the work of some of his followers.


Integration in Finite Terms: Fundamental Sources

Integration in Finite Terms: Fundamental Sources

Author: Clemens G. Raab

Publisher: Springer Nature

Published: 2022-06-06

Total Pages: 303

ISBN-13: 3030987671

DOWNLOAD EBOOK

This volume gives an up-to-date review of the subject Integration in Finite Terms. The book collects four significant texts together with an extensive bibliography and commentaries discussing these works and their impact. These texts, either out of print or never published before, are fundamental to the subject of the book. Applications in combinatorics and physics have aroused a renewed interest in this well-developed area devoted to finding solutions of differential equations and, in particular, antiderivatives, expressible in terms of classes of elementary and special functions.


Symbolic Integration I

Symbolic Integration I

Author: Manuel Bronstein

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 311

ISBN-13: 3662033860

DOWNLOAD EBOOK

This first volume in the series "Algorithms and Computation in Mathematics", is destined to become the standard reference work in the field. Manuel Bronstein is the number-one expert on this topic and his book is the first to treat the subject both comprehensively and in sufficient detail - incorporating new results along the way. The book addresses mathematicians and computer scientists interested in symbolic computation, developers and programmers of computer algebra systems as well as users of symbolic integration methods. Many algorithms are given in pseudocode ready for immediate implementation, making the book equally suitable as a textbook for lecture courses on symbolic integration.


A Course on Integral Equations

A Course on Integral Equations

Author: A. C. Pipkin

Publisher: Springer Science & Business Media

Published: 1991-09-12

Total Pages: 302

ISBN-13: 9780387975573

DOWNLOAD EBOOK

This book is based on a one semester course for graduate students in physical sciences and applied mathemat- ics. Not detailed mathematical background is needed but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is problem-solving rather than theorem proving, the main requirement is that the student should be willing to work out a large number of specific examples. The course is divided about equally into three parts, where the first part is mostly theoretical and the remaining two parts emphasize on problem solving.


Geometric Integration Theory

Geometric Integration Theory

Author: Steven G. Krantz

Publisher: Springer Science & Business Media

Published: 2008-12-15

Total Pages: 344

ISBN-13: 0817646795

DOWNLOAD EBOOK

This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.


Calculus Volume 3

Calculus Volume 3

Author: Edwin Herman

Publisher:

Published: 2016-03-30

Total Pages: 0

ISBN-13: 9781947172838

DOWNLOAD EBOOK

Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.


Methods of Numerical Integration

Methods of Numerical Integration

Author: Philip J. Davis

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 628

ISBN-13: 1483264289

DOWNLOAD EBOOK

Methods of Numerical Integration, Second Edition describes the theoretical and practical aspects of major methods of numerical integration. Numerical integration is the study of how the numerical value of an integral can be found. This book contains six chapters and begins with a discussion of the basic principles and limitations of numerical integration. The succeeding chapters present the approximate integration rules and formulas over finite and infinite intervals. These topics are followed by a review of error analysis and estimation, as well as the application of functional analysis to numerical integration. A chapter describes the approximate integration in two or more dimensions. The final chapter looks into the goals and processes of automatic integration, with particular attention to the application of Tschebyscheff polynomials. This book will be of great value to theoreticians and computer programmers.