Integral Methods in Science and Engineering, Volume 2

Integral Methods in Science and Engineering, Volume 2

Author: Maria Eugenia Perez

Publisher: Springer Science & Business Media

Published: 2009-12-10

Total Pages: 380

ISBN-13: 0817648976

DOWNLOAD EBOOK

The two volumes contain 65 chapters, which are based on talks presented by reputable researchers in the field at the Tenth International Conference on Integral Methods in Science and Engineering. The chapters address a wide variety of methodologies, from the construction of boundary integral methods to the application of integration-based analytic and computational techniques in almost all aspects of today's technological world. Both volumes are useful references for a broad audience of professionals, including pure and applied mathematicians, physicists, biologists, and mechanical, civil, and electrical engineers, as well as graduate students, who use integration as a fundamental technique in their research.


Integral Methods in Science and Engineering, Volume 2

Integral Methods in Science and Engineering, Volume 2

Author: Christian Constanda

Publisher: Birkhäuser

Published: 2017-09-08

Total Pages: 318

ISBN-13: 3319593870

DOWNLOAD EBOOK

This contributed volume contains a collection of articles on the most recent advances in integral methods. The second of two volumes, this work focuses on the applications of integral methods to specific problems in science and engineering. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:• Boundary elements• Transport problems• Option pricing• Gas reservoirs• Electromagnetic scattering This collection will be of interest to researchers in applied mathematics, physics, and mechanical and petroleum engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.


Integral Methods in Science and Engineering

Integral Methods in Science and Engineering

Author: M. Zuhair Nashed

Publisher: Springer Science & Business Media

Published: 2005-10-20

Total Pages: 334

ISBN-13: 9780817643775

DOWNLOAD EBOOK

The quantitative and qualitative study of the physical world makes use of many mathematical models governed by a great diversity of ordinary, partial differential, integral, and integro-differential equations. An essential step in such investigations is the solution of these types of equations, which sometimes can be performed analytically, while at other times only numerically. This edited, self-contained volume presents a series of state-of-the-art analytic and numerical methods of solution constructed for important problems arising in science and engineering, all based on the powerful operation of (exact or approximate) integration. The volume may be used as a reference guide and a practical resource. It is suitable for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines.


Integral Methods in Science and Engineering, Volume 1

Integral Methods in Science and Engineering, Volume 1

Author: Christian Constanda

Publisher: Birkhäuser

Published: 2017-09-08

Total Pages: 342

ISBN-13: 3319593846

DOWNLOAD EBOOK

This contributed volume contains a collection of articles on the most recent advances in integral methods. The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:• Integral equations• Homogenization• Duality methods• Optimal design• Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.


Integral Methods in Science and Engineering

Integral Methods in Science and Engineering

Author: Christian Constanda

Publisher: Springer

Published: 2019-07-18

Total Pages: 476

ISBN-13: 3030160777

DOWNLOAD EBOOK

This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this book are based on talks given at the Fifteenth International Conference on Integral Methods in Science and Engineering, held July 16-20, 2018 at the University of Brighton, UK, and are written by internationally recognized researchers. The topics addressed are wide ranging, and include: Asymptotic analysis Boundary-domain integral equations Viscoplastic fluid flow Stationary waves Interior Neumann shape optimization Self-configuring neural networks This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.


Elliptic Operators, Topology, and Asymptotic Methods

Elliptic Operators, Topology, and Asymptotic Methods

Author: John Roe

Publisher: CRC Press

Published: 2013-12-19

Total Pages: 218

ISBN-13: 1482247836

DOWNLOAD EBOOK

Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important exampl


Elliptic Operators, Topology, and Asymptotic Methods, Second Edition

Elliptic Operators, Topology, and Asymptotic Methods, Second Edition

Author: John Roe

Publisher: CRC Press

Published: 1999-01-06

Total Pages: 222

ISBN-13: 9780582325029

DOWNLOAD EBOOK

Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important examples and applications, Elliptic Operators, Topology, and Asymptotic Methods, Second Edition introduces the ideas surrounding the heat equation proof of the Atiyah-Singer index theorem. The author builds towards proof of the Lefschetz formula and the full index theorem with four chapters of geometry, five chapters of analysis, and four chapters of topology. The topics addressed include Hodge theory, Weyl's theorem on the distribution of the eigenvalues of the Laplacian, the asymptotic expansion for the heat kernel, and the index theorem for Dirac-type operators using Getzler's direct method. As a "dessert," the final two chapters offer discussion of Witten's analytic approach to the Morse inequalities and the L2-index theorem of Atiyah for Galois coverings. The text assumes some background in differential geometry and functional analysis. With the partial differential equation theory developed within the text and the exercises in each chapter, Elliptic Operators, Topology, and Asymptotic Methods becomes the ideal vehicle for self-study or coursework. Mathematicians, researchers, and physicists working with index theory or supersymmetry will find it a concise but wide-ranging introduction to this important and intriguing field.


Mathematical Methods in Scattering Theory and Biomedical Technology

Mathematical Methods in Scattering Theory and Biomedical Technology

Author: George Dassios

Publisher: CRC Press

Published: 1998-06-11

Total Pages: 252

ISBN-13: 9780582368040

DOWNLOAD EBOOK

The papers in this volume address the state-of-the-art and future directions in applied mathematics in both scattering theory and biomedical technology. A workshop held in Metsovo, Greece during the summer of 1997 brought together some of the world's foremose experts in the field with researchers working in Greece. Sixteen of the contributed papers appear in this volume. All the papers give new directions, and in several cases, the most important scientific contributions in the fields.


Nonlinear Partial Differential Equations and Their Applications

Nonlinear Partial Differential Equations and Their Applications

Author: Doina Cioranescu

Publisher: CRC Press

Published: 1998-08-15

Total Pages: 354

ISBN-13: 9780582369269

DOWNLOAD EBOOK

This book presents the texts of selected lectures on recent work in the field of nonlinear partial differential equations delivered by leading international experts at the well-established weekly seminar held at the Collège de France. Emphasis is on applications to numerous areas, including control theory, theoretical physics, fluid and continuum mechanics, free boundary problems, dynamical systems, scientific computing, numerical analysis, and engineering. Proceedings of this seminar will be of particular interest to postgraduate students and specialists in the area of nonlinear partial differential equations.


Dirac Operators in Analysis

Dirac Operators in Analysis

Author: John Ryan

Publisher: CRC Press

Published: 1999-01-06

Total Pages: 260

ISBN-13: 9780582356818

DOWNLOAD EBOOK

Clifford analysis has blossomed into an increasingly relevant and fashionable area of research in mathematical analysis-it fits conveniently at the crossroads of many fundamental areas of research, including classical harmonic analysis, operator theory, and boundary behavior. This book presents a state-of-the-art account of the most recent developments in the field of Clifford analysis with contributions by many of the field's leading researchers.