Integral Methods in Science and Engineering, Volume 1

Integral Methods in Science and Engineering, Volume 1

Author: Christian Constanda

Publisher: Birkhäuser

Published: 2017-09-08

Total Pages: 342

ISBN-13: 3319593846

DOWNLOAD EBOOK

This contributed volume contains a collection of articles on the most recent advances in integral methods. The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:• Integral equations• Homogenization• Duality methods• Optimal design• Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.


Integral Methods in Science and Engineering, Volume 1

Integral Methods in Science and Engineering, Volume 1

Author: Maria Eugenia Perez

Publisher: Springer Science & Business Media

Published: 2009-12-23

Total Pages: 351

ISBN-13: 0817648992

DOWNLOAD EBOOK

The two volumes contain 65 chapters, which are based on talks presented by reputable researchers in the field at the Tenth International Conference on Integral Methods in Science and Engineering. The chapters address a wide variety of methodologies, from the construction of boundary integral methods to the application of integration-based analytic and computational techniques in almost all aspects of today's technological world. Both volumes are useful references for a broad audience of professionals, including pure and applied mathematicians, physicists, biologists, and mechanical, civil, and electrical engineers, as well as graduate students, who use integration as a fundamental technique in their research.


Integral Methods in Science and Engineering, Volume 2

Integral Methods in Science and Engineering, Volume 2

Author: Maria Eugenia Perez

Publisher: Springer Science & Business Media

Published: 2009-12-10

Total Pages: 380

ISBN-13: 0817648976

DOWNLOAD EBOOK

The two volumes contain 65 chapters, which are based on talks presented by reputable researchers in the field at the Tenth International Conference on Integral Methods in Science and Engineering. The chapters address a wide variety of methodologies, from the construction of boundary integral methods to the application of integration-based analytic and computational techniques in almost all aspects of today's technological world. Both volumes are useful references for a broad audience of professionals, including pure and applied mathematicians, physicists, biologists, and mechanical, civil, and electrical engineers, as well as graduate students, who use integration as a fundamental technique in their research.


Integral Methods in Science and Engineering, Volume 2

Integral Methods in Science and Engineering, Volume 2

Author: Christian Constanda

Publisher: Birkhäuser

Published: 2017-09-08

Total Pages: 318

ISBN-13: 3319593870

DOWNLOAD EBOOK

This contributed volume contains a collection of articles on the most recent advances in integral methods. The second of two volumes, this work focuses on the applications of integral methods to specific problems in science and engineering. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:• Boundary elements• Transport problems• Option pricing• Gas reservoirs• Electromagnetic scattering This collection will be of interest to researchers in applied mathematics, physics, and mechanical and petroleum engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.


Integral Transforms in Science and Engineering

Integral Transforms in Science and Engineering

Author: K. Wolf

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 495

ISBN-13: 1475708726

DOWNLOAD EBOOK

Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though.


Techniques of Functional Analysis for Differential and Integral Equations

Techniques of Functional Analysis for Differential and Integral Equations

Author: Paul Sacks

Publisher: Academic Press

Published: 2017-05-16

Total Pages: 322

ISBN-13: 0128114576

DOWNLOAD EBOOK

Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics


Calculus for Engineering Students

Calculus for Engineering Students

Author: Jesus Martin Vaquero

Publisher: Academic Press

Published: 2020-08-10

Total Pages: 372

ISBN-13: 0128172118

DOWNLOAD EBOOK

Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications. - Organized around project-based rather than traditional homework-based learning - Reviews basic mathematics and theory while also introducing applications - Employs uniform chapter sections that encourage the comparison and contrast of different areas of engineering


Distributions in the Physical and Engineering Sciences, Volume 1

Distributions in the Physical and Engineering Sciences, Volume 1

Author: Alexander I. Saichev

Publisher: Springer

Published: 2018-08-29

Total Pages: 347

ISBN-13: 3319979582

DOWNLOAD EBOOK

Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practitioners and researchers. The goal of the book is to give the reader, specialist and non-specialist usable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. The present, softcover reprint is designed to make this classic textbook available to a wider audience.


Materials Science and Engineering. Volume I

Materials Science and Engineering. Volume I

Author: Abbas Hamrang

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 300

ISBN-13: 148223937X

DOWNLOAD EBOOK

This volume highlights the latest developments and trends in advanced non-classical materials and structures. It presents the developments of advanced materials and respective tools to characterize and predict the material properties and behavior. It also includes original, theoretical, and important experimental results that use non-routine method


Elliptic Operators, Topology, and Asymptotic Methods, Second Edition

Elliptic Operators, Topology, and Asymptotic Methods, Second Edition

Author: John Roe

Publisher: CRC Press

Published: 1999-01-06

Total Pages: 222

ISBN-13: 9780582325029

DOWNLOAD EBOOK

Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important examples and applications, Elliptic Operators, Topology, and Asymptotic Methods, Second Edition introduces the ideas surrounding the heat equation proof of the Atiyah-Singer index theorem. The author builds towards proof of the Lefschetz formula and the full index theorem with four chapters of geometry, five chapters of analysis, and four chapters of topology. The topics addressed include Hodge theory, Weyl's theorem on the distribution of the eigenvalues of the Laplacian, the asymptotic expansion for the heat kernel, and the index theorem for Dirac-type operators using Getzler's direct method. As a "dessert," the final two chapters offer discussion of Witten's analytic approach to the Morse inequalities and the L2-index theorem of Atiyah for Galois coverings. The text assumes some background in differential geometry and functional analysis. With the partial differential equation theory developed within the text and the exercises in each chapter, Elliptic Operators, Topology, and Asymptotic Methods becomes the ideal vehicle for self-study or coursework. Mathematicians, researchers, and physicists working with index theory or supersymmetry will find it a concise but wide-ranging introduction to this important and intriguing field.