Integrable Hamiltonian Systems on Complex Lie Groups

Integrable Hamiltonian Systems on Complex Lie Groups

Author: Velimir Jurdjevic

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 150

ISBN-13: 0821837648

DOWNLOAD EBOOK

Studies the elastic problems on simply connected manifolds $M_n$ whose orthonormal frame bundle is a Lie group $G$. This title synthesizes ideas from optimal control theory, adapted to variational problems on the principal bundles of Riemannian spaces, and the symplectic geometry of the Lie algebra $\mathfrak{g}, $ of $G$


Optimal Control and Geometry: Integrable Systems

Optimal Control and Geometry: Integrable Systems

Author: Velimir Jurdjevic

Publisher: Cambridge University Press

Published: 2016-07-04

Total Pages: 437

ISBN-13: 1316586332

DOWNLOAD EBOOK

The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.


A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model

A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model

Author: Amadeu Delshams

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 158

ISBN-13: 0821838245

DOWNLOAD EBOOK

Beginning by introducing a geometric mechanism for diffusion in a priori unstable nearly integrable dynamical systems. This book is based on the observation that resonances, besides destroying the primary KAM tori, create secondary tori and tori of lower dimension. It argues that these objects created by resonances can be incorporated in transition chains taking the place of the destroyed primary KAM tori.The authors establish rigorously the existence of this mechanism in a simplemodel that has been studied before. The main technique is to develop a toolkit to study, in a unified way, tori of different topologies and their invariant manifolds, their intersections as well as shadowing properties of these bi-asymptotic orbits. This toolkit is based on extending and unifyingstandard techniques. A new tool used here is the scattering map of normally hyperbolic invariant manifolds.The model considered is a one-parameter family, which for $\varepsilon = 0$ is an integrable system. We give a small number of explicit conditions the jet of order $3$ of the family that, if verified imply diffusion. The conditions are just that some explicitely constructed functionals do not vanish identically or have non-degenerate critical points, etc.An attractive feature of themechanism is that the transition chains are shorter in the places where the heuristic intuition and numerical experimentation suggests that the diffusion is strongest.


Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Author: D.H. Sattinger

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 218

ISBN-13: 1475719108

DOWNLOAD EBOOK

This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.


An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras

Author: Alexander A. Kirillov

Publisher: Cambridge University Press

Published: 2008-07-31

Total Pages: 237

ISBN-13: 0521889693

DOWNLOAD EBOOK

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.


The Complex Monge-Ampere Equation and Pluripotential Theory

The Complex Monge-Ampere Equation and Pluripotential Theory

Author: Sławomir Kołodziej

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 82

ISBN-13: 082183763X

DOWNLOAD EBOOK

We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.


The Beilinson Complex and Canonical Rings of Irregular Surfaces

The Beilinson Complex and Canonical Rings of Irregular Surfaces

Author: Alberto Canonaco

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 114

ISBN-13: 0821841939

DOWNLOAD EBOOK

An important theorem by Beilinson describes the bounded derived category of coherent sheaves on $\mathbb{P n$, yielding in particular a resolution of every coherent sheaf on $\mathbb{P n$ in terms of the vector bundles $\Omega {\mathbb{P n j(j)$ for $0\le j\le n$. This theorem is here extended to weighted projective spaces. To this purpose we consider, instead of the usual category of coherent sheaves on $\mathbb{P ({\rm w )$ (the weighted projective space of weights $\rm w=({\rm w 0,\dots,{\rm w n)$), a suitable category of graded coherent sheaves (the two categories are equivalent if and only if ${\rm w 0=\cdots={\rm w n=1$, i.e. $\mathbb{P ({\rm w )= \mathbb{P n$), obtained by endowing $\mathbb{P ({\rm w )$ with a natural graded structure sheaf. The resulting graded ringed space $\overline{\mathbb{P ({\rm w )$ is an example of graded scheme (in chapter 1 graded schemes are defined and studied in some greater generality than is needed in the rest of the work). Then in chapter 2 we prove This weighted version of Beilinson's theorem is then applied in chapter 3 to prove a structure theorem for good birational weighted canonical projections of surfaces of general type (i.e., for morphisms, which are birational onto the image, from a minimal surface of general type $S$ into a $3$-dimensional $\mathbb{P ({\rm w )$, induced by $4$ sections $\sigma i\in H0(S,\mathcal{O S({\rm w iK S))$). This is a generalization of a theorem by Catanese and Schreyer (who treated the case of projections into $\mathbb{P 3$), and is mainly interesting for irregular surfaces, since in the regular case a similar but simpler result (due to Catanese) was already known. The theorem essentially states that giving a good birational weighted canonical projection is equivalent to giving a symmetric morphism of (graded) vector bundles on $\overline{\mathbb{P ({\rm w )$, satisfying some suitable conditions. Such a morphism is then explicitly determined in chapter 4 for a family of surfaces with numerical invariant


A Categorical Approach to Imprimitivity Theorems for $C^*$-Dynamical Systems

A Categorical Approach to Imprimitivity Theorems for $C^*$-Dynamical Systems

Author: Siegfried Echterhoff

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 186

ISBN-13: 0821838571

DOWNLOAD EBOOK

It has become apparent that studying the representation theory and structure of crossed-product C*-algebras requires imprimitivity theorems. This monograph shows that the imprimitivity theorem for reduced algebras, Green's imprimitivity theorem for actions of groups, and Mansfield's imprimitivity theorem for coactions of groups can all be understoo


Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems

Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems

Author: Denis V. Osin

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 114

ISBN-13: 0821838210

DOWNLOAD EBOOK

In this the authors obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows them to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. There is also an introduction and study of the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve somenatural algorithmic problems.


Lax-Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional Setting

Lax-Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional Setting

Author: Joseph A. Ball

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 114

ISBN-13: 0821837680

DOWNLOAD EBOOK

The evolution operator for the Lax-Phillips scattering system is an isometric representation of the Cuntz algebra, while the nonnegative time axis for the conservative, linear system is the free semigroup on $d$ letters. This title presents a multivariable setting for Lax-Phillips scattering and for conservative, discrete-time, linear systems.