Integrability and Nonintegrability of Dynamical Systems

Integrability and Nonintegrability of Dynamical Systems

Author: Alain Goriely

Publisher: World Scientific

Published: 2001

Total Pages: 438

ISBN-13: 9789812811943

DOWNLOAD EBOOK

This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems). As generic systems of differential equations cannot be exactly solved, the book reviews the different notions of nonintegrability and shows how to prove the nonexistence of exact solutions and/or a constant of motion. Finally, nonintegrability theory is linked to dynamical systems theory by showing how the property of complete integrability, partial integrability or nonintegrability can be related to regular and irregular dynamics in phase space. Contents: Integrability: An Algebraic Approach; Integrability: An Analytic Approach; Polynomial and Quasi-Polynomial Vector Fields; Nonintegrability; Hamiltonian Systems; Nearly Integrable Dynamical Systems; Open Problems. Readership: Mathematical and theoretical physicists and astronomers and engineers interested in dynamical systems.


Differential Galois Theory and Non-Integrability of Hamiltonian Systems

Differential Galois Theory and Non-Integrability of Hamiltonian Systems

Author: Juan J. Morales Ruiz

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 177

ISBN-13: 3034887183

DOWNLOAD EBOOK

This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc. The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed. - - - The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography. (Mathematical Reviews) For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics. (Zentralblatt MATH)


Integrability of Dynamical Systems: Algebra and Analysis

Integrability of Dynamical Systems: Algebra and Analysis

Author: Xiang Zhang

Publisher: Springer

Published: 2017-03-30

Total Pages: 390

ISBN-13: 9811042268

DOWNLOAD EBOOK

This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.


Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems

Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems

Author: Antonio Giorgilli

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 474

ISBN-13: 100917486X

DOWNLOAD EBOOK

Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.


Predictability, Stability, and Chaos in N-Body Dynamical Systems

Predictability, Stability, and Chaos in N-Body Dynamical Systems

Author: Archie E. Roy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 581

ISBN-13: 146845997X

DOWNLOAD EBOOK

The reader will find in this volume the Proceedings of the NATO Advanced Study Institute held in Cortina d'Ampezzo, Italy between August 6 and August 17, 1990 under the title "Predictability, Stability, and Chaos in N-Body Dynamical Systems". The Institute was the latest in a series held at three-yearly inter vals from 1972 to 1987 in dynamical astronomy, theoretical mechanics and celestial mechanics. These previous institutes, held in high esteem by the international community of research workers, have resulted in a series of well-received Proceedings. The 1990 Institute attracted 74 participants from 16 countries, six outside the NATO group. Fifteen series of lectures were given by invited speakers; additionally some 40 valuable presentations were made by the younger participants, most of which are included in these Proceedings. The last twenty years in particular has been a time of increasingly rapid progress in tackling long-standing and also newly-arising problems in dynamics of N-body systems, point-mass and non-point-mass, a rate of progress achieved because of correspondingly rapid developments of new computer hardware and software together with the advent of new analytical techniques. It was a time of exciting progress culminating in the ability to carry out research programmes into the evolution of the outer Solar 8 System over periods of more than 10 years and to study star cluster and galactic models in unprecedented detail.


Scaling Laws in Dynamical Systems

Scaling Laws in Dynamical Systems

Author: Edson Denis Leonel

Publisher: Springer Nature

Published: 2021-08-26

Total Pages: 247

ISBN-13: 9811635447

DOWNLOAD EBOOK

This book discusses many of the common scaling properties observed in some nonlinear dynamical systems mostly described by mappings. The unpredictability of the time evolution of two nearby initial conditions in the phase space together with the exponential divergence from each other as time goes by lead to the concept of chaos. Some of the observables in nonlinear systems exhibit characteristics of scaling invariance being then described via scaling laws. From the variation of control parameters, physical observables in the phase space may be characterized by using power laws that many times yield into universal behavior. The application of such a formalism has been well accepted in the scientific community of nonlinear dynamics. Therefore I had in mind when writing this book was to bring together few of the research results in nonlinear systems using scaling formalism that could treated either in under-graduation as well as in the post graduation in the several exact programs but no earlier requirements were needed from the students unless the basic physics and mathematics. At the same time, the book must be original enough to contribute to the existing literature but with no excessive superposition of the topics already dealt with in other text books. The majority of the Chapters present a list of exercises. Some of them are analytic and others are numeric with few presenting some degree of computational complexity.


Nonlinear Dynamics in Physiology

Nonlinear Dynamics in Physiology

Author: Mark Shelhamer

Publisher: World Scientific

Published: 2007

Total Pages: 367

ISBN-13: 9812700293

DOWNLOAD EBOOK

This book provides a compilation of mathematical-computational tools that are used to analyze experimental data. The techniques presented are those that have been most widely and successfully applied to the analysis of physiological systems, and address issues such as randomness, determinism, dimension, and nonlinearity. In addition to bringing together the most useful methods, sufficient mathematical background is provided to enable non-specialists to understand and apply the computational techniques. Thus, the material will be useful to life-science investigators on several levels, from physiologists to bioengineer.Initial chapters present background material on dynamic systems, statistics, and linear system analysis. Each computational technique is demonstrated with examples drawn from physiology, and several chapters present case studies from oculomotor control, neuroscience, cardiology, psychology, and epidemiology. Throughout the text, historical notes give a sense of the development of the field and provide a perspective on how the techniques were developed and where they might lead. The overall approach is based largely on the analysis of trajectories in the state space, with emphasis on time-delay reconstruction of state-space trajectories. The goal of the book is to enable readers to apply these methods to their own research.


Hamiltonian Dynamical Systems

Hamiltonian Dynamical Systems

Author: R.S MacKay

Publisher: CRC Press

Published: 2020-08-17

Total Pages: 797

ISBN-13: 100011208X

DOWNLOAD EBOOK

Classical mechanics is a subject that is teeming with life. However, most of the interesting results are scattered around in the specialist literature, which means that potential readers may be somewhat discouraged by the effort required to obtain them. Addressing this situation, Hamiltonian Dynamical Systems includes some of the most significant papers in Hamiltonian dynamics published during the last 60 years. The book covers bifurcation of periodic orbits, the break-up of invariant tori, chaotic behavior in hyperbolic systems, and the intricacies of real systems that contain coexisting order and chaos. It begins with an introductory survey of the subjects to help readers appreciate the underlying themes that unite an apparently diverse collection of articles. The book concludes with a selection of papers on applications, including in celestial mechanics, plasma physics, chemistry, accelerator physics, fluid mechanics, and solid state mechanics, and contains an extensive bibliography. The book provides a worthy introduction to the subject for anyone with an undergraduate background in physics or mathematics, and an indispensable reference work for researchers and graduate students interested in any aspect of classical mechanics.


The Painlevé Property

The Painlevé Property

Author: Robert Conte

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 828

ISBN-13: 1461215323

DOWNLOAD EBOOK

The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an in-depth study of singularities, that were first used by Poincar and subsequently developed by Painlev in his famous Leons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlev dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.


The Dynamical Behaviour of our Planetary System

The Dynamical Behaviour of our Planetary System

Author: Rudolf Dvorak

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 424

ISBN-13: 9401155100

DOWNLOAD EBOOK

It is now a well established tradition that every four years, at the end of winter, a group of "celestial mechanicians" from all over the world gather at the "Alpen gasthof Peter Rosegger" in the Styrian Alps (Ramsau, Austria). This time the colloquium was held from March 17 to March 23, 1996 and was devoted to the Dynamical Behaviour of our Planetary System. The papers covered a large range of questions of current interest: theoretical questions (re- nances, universal properties, non integrability, transport, ... ) and questions about numerical tools ( symplectic maps, indicators of chaos, ... ) were particularly well represented; the never ending problem of the sculpting of the asteroid belt was also qui te popular. You will find in the following pages a pot-pourri of what we listen to; you will miss of course the diversity of accents with which the tunes were delivered: from China, from Japan, from Brazil, from the United-States of America and from all over Europe, East and West. Let us not forget that the comet 199682 (Hyakutake) came to visit us; many an evening was spent on the deck of the Alpengasthof contemplating this celestial visitor who liked to play hide-and-seek behind the spruce trees.