Spectroscopy is an analytical method used to detect and identify samples, and analyze the electronic structure and behavior of a compound. Electronic structure is the bonding of inorganic compounds that give rise to a compounds' physical properties and reactivity. The two volume set covers current development in inorganic electronic spectroscopy. Because the field is inextricably linked to the more general area of electronic structure, the volumes will cover both inorganic spectroscopy and electronic structure. This second volume includes a series of case studies demonstrating how various methods and procedures in Volume 1 can be applied to important and topical areas of inorganic spectroscopy and electronic structure
Inorganic Chemistry fifth edition represents an integral part of a student's chemistry education. Basic chemical principles are set out clearly in 'Foundations' and are fully developed throughout the text, culminating in the cutting-edge research topics of the 'Frontiers', which illustrate the dynamic nature of inorganic chemistry.
Leading the reader from the fundamental principles of inorganic chemistry, right through to cutting-edge research at the forefront of the subject, Inorganic Chemistry, Sixth Edition is the ideal course companion for the duration of a student's degree. The authors have drawn upon their extensive teaching and research experience in updating this established text; the sixth edition retains the much-praised clarity of style and layout from previous editions, while offering an enhanced Frontiers section. Exciting new applications of inorganic chemistry have been added to this section, in particular relating to materials chemistry and medicine. This edition also sees a greater use of learning features to provide students with all the support they need for their studies. Providing comprehensive coverage of inorganic chemistry, while placing it in context, this text will enable the reader to fully master this important subject. Online Resource Centre: For registered adopters of the text: · Figures, marginal structures, and tables of data ready to download · Test bank For students: · Answers to self-tests and exercises from the book · Videos of chemical reactions · Tables for group theory · Web links · Interactive structures and other resources on www.chemtube3D.com
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973
Leading the reader from the fundamental principles of inorganic chemistry, right through to cutting-edge research at the forefront of the subject, Inorganic Chemistry, Seventh Edition is the ideal course companion for the duration of a student's degree. The authors have drawn upon their extensive teaching and research experience to update this text; the seventh edition retains the much-praised clarity of style and layout from previous editions, while offering an enhanced section on 'expanding our horizons'. The latest innovative applications of green chemistry have been added, to clearly illustrate the real-world significance of the subject. This edition also sees a greater used of learning features, including substantial updates to the problem solving questions, additional self-tests and walk through explanations which enable students to check their understanding of key concepts and develop problem-solving skills. Providing comprehensive coverage of inorganic chemistry, while placing it in context, this text will enable the reader to fully master this important subject. Online Resources: Inorganic Chemistry, Seventh Edition is accompanied by a range of online resources: For registered adopters of the text: DT Figures, marginal structures, and tables of data ready to download DT Test bank For students: DT Answers to self-tests and exercises from the book DT Tables for group theory DT Web links DT Links to interactive structures and other resources on www.chemtube3D.com
With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.
Physical Inorganic Chemistry contains the fundamentals of physical inorganic chemistry, including information on reaction types, and treatments of reaction mechanisms. Additionally, the text explores complex reactions and processes in terms of energy, environment, and health. This valuable resource closely examines mechanisms, an under-discussed topic. Divided into two sections, researchers, professors, and students will find the wide range of topics, including the most cutting edge topics in chemistry, like the future of solar energy, catalysis, environmental issues, climate changes atmosphere, and human health, essential to understanding chemistry.
Determining the structure of molecules is a fundamental skill that all chemists must learn. Structural Methods in Molecular Inorganic Chemistry is designed to help readers interpret experimental data, understand the material published in modern journals of inorganic chemistry, and make decisions about what techniques will be the most useful in solving particular structural problems. Following a general introduction to the tools and concepts in structural chemistry, the following topics are covered in detail: • computational chemistry • nuclear magnetic resonance spectroscopy • electron paramagnetic resonance spectroscopy • Mössbauer spectroscopy • rotational spectra and rotational structure • vibrational spectroscopy • electronic characterization techniques • diffraction methods • mass spectrometry The final chapter presents a series of case histories, illustrating how chemists have applied a broad range of structural techniques to interpret and understand chemical systems. Throughout the textbook a strong connection is made between theoretical topics and the real world of practicing chemists. Each chapter concludes with problems and discussion questions, and a supporting website contains additional advanced material. Structural Methods in Molecular Inorganic Chemistry is an extensive update and sequel to the successful textbook Structural Methods in Inorganic Chemistry by Ebsworth, Rankin and Cradock. It is essential reading for all advanced students of chemistry, and a handy reference source for the professional chemist.
This book is designed to develop important practical skills for chemistry majors interested in synthetic chemistry. It will serve to teach students proper techniques for the preparation and handling of a variety of inorganic and coordination compounds. It shows them how to conduct thermal decomposition reactions; prepare moderately air-sensitive and moisture-sensitive compounds; and characterise obtained metal complexes using a variety of physical methods. This volume is well-illustrated with colour photos, schemes and figures that allow safe, step-by-step work on assigned laboratory experiments. There are extensive pre-lab instructions for techniques, concepts and topics of experiments, and complete initial introductions to the methods used during the lab are also provided. Because of its clearly presented content with numerous practical examples, this book will be of great interest to chemistry professionals working in industry.
Notoriously cumbersome to isolate and challenging to synthesize, the path of natural products to viable drugs is an arduous journey. Yet compounds isolated from nature may possess fascinating structures, biological profiles and pharmaceutical potential far greater than anything made by man. Natural Products Chemistry: Sources, Separations and Structures presents a practical guide to sourcing, isolating, and discovering new compounds from nature many of which become pharmaceutical drugs. This book emphasizes the challenges and advantages of products acquired from nature, compared to those obtained from combinatorial chemistry. A basic introduction, the book describes the whole cycle from farm to final compound, backed up by case studies drawn from industry and research applications. It broadens the scope of applications and draws upon examples from various sources. Natural products chemistry, as taught today, draws its examples mainly from marine chemistry or plant chemistry; however, there is also a fascinating and rich world of fermented (microbial and algal) products leading to complex structures. Thus, the book draws upon examples from the microbial world and from insects too. Therefore, this is a source of bioactive metabolites, not traditionally available in academic settings, more the mainstay of the pharmaceutical industry. Providing a roadmap of the process of collecting a compound from nature, isolating the active ingredient, and determining the chemical structure, this book provides a unique approach to the world of natural products.