Inkjet-Configurable Gate Array

Inkjet-Configurable Gate Array

Author: Mohammad Mashayekhi

Publisher: Springer

Published: 2017-12-29

Total Pages: 222

ISBN-13: 331972116X

DOWNLOAD EBOOK

This thesis reports on an outstanding research advance in the development of Application Specific Printed Electronic (ASPE) circuits. It proposes the novel Inkjet-Configurable Gate Array (IGA) concept as a design-manufacturing method for the direct mapping of digital functions on top of new prefabricated structures. The thesis begins by providing details on the generation of the IGA bulk, and subsequently presents Drop-on-Demand configurable methodologies for the metallization of IGAs. Lastly, it demonstrates IGAs’ suitability for personalization and yield improvement, and reports on the integration of various circuits into IGA bulk. In addition to highlighting novel results, the thesis also offers a comprehensive introduction to printed electronics, from technology development, to design methods, tools and kits.


Inkjet-configurable Gate Arrays

Inkjet-configurable Gate Arrays

Author: Mohammad Mashayekhi

Publisher:

Published: 2016

Total Pages: 260

ISBN-13: 9788449066740

DOWNLOAD EBOOK

Over the last decades, Organic Electronics has been emerging as a multidisciplinary and innovative way to generate electronic devices and systems. It is intended to provide a platform for low-cost, large-area, and low-frequency Printable Electronics on a variety of substrates, including flexible plastic substrates. Just as the first information revolution caused by integrated silicon circuits, PE is expected to cause another revolution characterized by the distribution of information systems in all aspects of life. Although the integrated circuits, based on Organic Thin Film Transistors (OTFT), are not meant to compete with the silicon-based high-end industry, their performance have already reached to a level enabling the use of organic technology to an ever-increasing number of emerging applications, such as flexible optical displays, sensors, and low-end microelectronics. Currently, most of the digital integrated circuits are yet designed by specifying the layout of each individual transistor and their interconnections. Full-custom design is extremely labor-intensive, time consuming for complex circuits and it requires advanced computer software in the design process, and several expensive mask sets in the fabrication process. Besides, taking the soft and hard faults at transistor level into account, the yield at system level is expected to be very low, since failure of one transistor causes the entire circuit to fail. This is more important for technologies based in non-crystalline materials (such as silicon) in which deposition and layer formation is more irregular. On the other side, organic electronics is more complex than Printed Circuit Boards (PCB) in the sense that these do not include active devices and do not reach high integration level. Furthermore, similar to any new-born technology, the performance of organic electronic circuits is degraded due to some limitations in technological and materials sides. That being said, the question arises as to whether circuit design techniques can be employed to compensate these bottlenecks so as to meet yield and performance requirements. The work presented in this thesis contributes to overcome the above-mentioned issues by proposing the novel concept of Inkjet-configurable Gate Array (IGA) as a designmanufacturing method for the direct mapping of digital functions on top of new prefabricated structures. IGA brings together the advantages of semi-custom gate array methodology, field-configurability, and fault-tolerance, and adopt it to Application Specific Printed Electronic Circuit (ASPEC), which is the equivalent term to Application Specific Integrated Circuit (ASIC), but for PE. This alternative has two main advantages. Firstly, it allows implementing individual circuit personalization at a very low cost through the best use of additive mask-less digital printing techniques (e.g. Inkjet, Superfine Jet, and etc.) "in the field", thus avoiding the need for One Time Programmable ROM-like (or E2PROM) devices. Secondly, fault tolerance technique allows the adoption of a failure map to use only working transistors for circuit implementation, thus, it helps to obtain high yield circuits out of mid-yield foils.


Field-Programmable Gate Arrays

Field-Programmable Gate Arrays

Author: John V. Oldfield

Publisher: Wiley-Interscience

Published: 1995-01-23

Total Pages: 368

ISBN-13:

DOWNLOAD EBOOK

Due to unique advantages like security, improved testing, and reprogrammability, field programmable gate arrays are making broad inroads in the electronics industry. This comprehensive overview of the topic explains the underlying principles, strengths and limitations of a range of FPGA architectures. Includes abundant references and illustrations.


Field-Programmable Gate Array Technology

Field-Programmable Gate Array Technology

Author: Stephen M. Trimberger

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 271

ISBN-13: 1461527422

DOWNLOAD EBOOK

Many different kinds of FPGAs exist, with different programming technologies, different architectures and different software. Field-Programmable Gate Array Technology describes the major FPGA architectures available today, covering the three programming technologies that are in use and the major architectures built on those programming technologies. The reader is introduced to concepts relevant to the entire field of FPGAs using popular devices as examples. Field-Programmable Gate Array Technology includes discussions of FPGA integrated circuit manufacturing, circuit design and logic design. It describes the way logic and interconnect are implemented in various kinds of FPGAs. It covers particular problems with design for FPGAs and future possibilities for new architectures and software. This book compares CAD for FPGAs with CAD for traditional gate arrays. It describes algorithms for placement, routing and optimization of FPGAs. Field-Programmable Gate Array Technology describes all aspects of FPGA design and development. For this reason, it covers a significant amount of material. Each section is clearly explained to readers who are assumed to have general technical expertise in digital design and design tools. Potential developers of FPGAs will benefit primarily from the FPGA architecture and software discussion. Electronics systems designers and ASIC users will find a background to different types of FPGAs and applications of their use.


Applications of Field-Programmable Gate Arrays in Scientific Research

Applications of Field-Programmable Gate Arrays in Scientific Research

Author: Hartmut F.-W. Sadrozinski

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 161

ISBN-13: 1439841349

DOWNLOAD EBOOK

Focusing on resource awareness in field-programmable gate array (FPGA) design, Applications of Field-Programmable Gate Arrays in Scientific Research covers the principle of FPGAs and their functionality. It explores a host of applications, ranging from small one-chip laboratory systems to large-scale applications in "big science." The book first de


Reconfigurable Field Programmable Gate Arrays for Mission-Critical Applications

Reconfigurable Field Programmable Gate Arrays for Mission-Critical Applications

Author: Niccolò Battezzati

Publisher: Springer Science & Business Media

Published: 2010-11-09

Total Pages: 221

ISBN-13: 1441975950

DOWNLOAD EBOOK

Embedded systems applications that are either mission or safety-critical usually entail low- to mid- production volumes, require the rapid development of specific tasks, which are typically computing intensive, and are cost bounded. The adoption of re-configurable FPGAs in such application domains is constrained to the availability of suitable techniques to guarantee the dependability requirements entailed by critical applications. This book describes the challenges faced by designers when implementing a mission- or safety-critical application using re-configurable FPGAs and it details various techniques to overcome these challenges. In addition to an overview of the key concepts of re-configurable FPGAs, it provides a theoretical description of the failure modes that can cause incorrect operation of re-configurable FPGA-based electronic systems. It also outlines analysis techniques that can be used to forecast such failures and covers the theory behind solutions to mitigate fault effects. This book also reviews current technologies available for building re-configurable FPGAs, specifically SRAM-based technology and Flash-based technology. For each technology introduced, theoretical concepts presented are applied to real cases. Design techniques and tools are presented to develop critical applications using commercial, off-the-shelf devices, such as Xilinx Virtex FPGAs, and Actel ProASIC FPGAs. Alternative techniques based on radiation hardened FPGAs, such as Xilinx SIRF and Atmel ATF280 are also presented. This publication is an invaluable reference for anyone interested in understanding the technologies of re-configurable FPGAs, as well as designers developing critical applications based on these technologies.


Field-Programmable Gate Arrays

Field-Programmable Gate Arrays

Author: Stephen D. Brown

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 218

ISBN-13: 1461535727

DOWNLOAD EBOOK

Field-Programmable Gate Arrays (FPGAs) have emerged as an attractive means of implementing logic circuits, providing instant manufacturing turnaround and negligible prototype costs. They hold the promise of replacing much of the VLSI market now held by mask-programmed gate arrays. FPGAs offer an affordable solution for customized VLSI, over a wide variety of applications, and have also opened up new possibilities in designing reconfigurable digital systems. Field-Programmable Gate Arrays discusses the most important aspects of FPGAs in a textbook manner. It provides the reader with a focused view of the key issues, using a consistent notation and style of presentation. It provides detailed descriptions of commercially available FPGAs and an in-depth treatment of the FPGA architecture and CAD issues that are the subjects of current research. The material presented is of interest to a variety of readers, including those who are not familiar with FPGA technology, but wish to be introduced to it, as well as those who already have an understanding of FPGAs, but who are interested in learning about the research directions that are of current interest.


Field-Programmable Gate Arrays

Field-Programmable Gate Arrays

Author: John Oldfield

Publisher:

Published: 1995

Total Pages: 360

ISBN-13:

DOWNLOAD EBOOK

Timely, authoritative, application-oriented. an in-depth exploration of current and future uses of FPGAs in digital systems The development of field-programmable gate arrays (FPGAs) may well be the most important breakthrough for the microelectronics industry since the invention of the microprocessor. Using FPGAs, a system designer working on a PC can now develop a working prototype in a few hours and change it at will in just a few minutes, rather than waiting weeks or months for a printed-circuit assembly or a custom integrated circuit to be built. This newfound ability to change a system by simply altering its configuration memory is also leading to exciting new forms of computing, such as array applications that exploit parallelism. Now in a book that functions equally well as a working professional reference and a pedagogically consistent computer engineering text, John V. Oldfield and Richard C. Dorf: Provide a detailed overview of FPGAs in digital systems design Explain the underlying principles, strengths, and limitations of most FPGA architectures Supply many real-life case studies, from elementary to advanced applications--including examples of "custom computing machines" Review cutting-edge developments, including new architectures and a new field-programmable interconnect chip Discuss key economic and business aspects of FPGA manufacture and applications and their role in intellectual property protection Demonstrate ways in which FPGAs offer plausible solutions to some of the major computing problems of our day.


Logic Synthesis for Field-Programmable Gate Arrays

Logic Synthesis for Field-Programmable Gate Arrays

Author: Rajeev Murgai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 432

ISBN-13: 1461523451

DOWNLOAD EBOOK

Short turnaround has become critical in the design of electronic systems. Software- programmable components such as microprocessors and digital signal processors have been used extensively in such systems since they allow rapid design revisions. However, the inherent performance limitations of software-programmable systems mean that they are inadequate for high-performance designs. Designers thus turned to gate arrays as a solution. User-programmable gate arrays (field-programmable gate arrays, FPGAs) have recently emerged and are changing the way electronic systems are designed and implemented. The growing complexity of the logic circuits that can be packed onto an FPGA chip means that it has become important to have automatic synthesis tools that implement logic functions on these architectures. Logic Synthesis for Field-Programmable Gate Arrays describes logic synthesis for both look-up table (LUT) and multiplexor-based architectures, with a balanced presentation of existing techniques together with algorithms and the system developed by the authors. Audience: A useful reference for VLSI designers, developers of computer-aided design tools, and anyone involved in or with FPGAs.