Current knowledge of the genetic, epigenetic, behavioural and symbolic systems of inheritance requires a revision and extension of the mid-twentieth-century, gene-based, 'Modern Synthesis' version of Darwinian evolutionary theory. We present the case for this by first outlining the history that led to the neo-Darwinian view of evolution. In the second section we describe and compare different types of inheritance, and in the third discuss the implications of a broad view of heredity for various aspects of evolutionary theory. We end with an examination of the philosophical and conceptual ramifications of evolutionary thinking that incorporates multiple inheritance systems.
A pioneering proposal for a pluralistic extension of evolutionary theory, now updated to reflect the most recent research. This new edition of the widely read Evolution in Four Dimensions has been revised to reflect the spate of new discoveries in biology since the book was first published in 2005, offering corrections, an updated bibliography, and a substantial new chapter. Eva Jablonka and Marion Lamb's pioneering argument proposes that there is more to heredity than genes. They describe four “dimensions” in heredity—four inheritance systems that play a role in evolution: genetic, epigenetic (or non-DNA cellular transmission of traits), behavioral, and symbolic (transmission through language and other forms of symbolic communication). These systems, they argue, can all provide variations on which natural selection can act. Jablonka and Lamb present a richer, more complex view of evolution than that offered by the gene-based Modern Synthesis, arguing that induced and acquired changes also play a role. Their lucid and accessible text is accompanied by artist-physician Anna Zeligowski's lively drawings, which humorously and effectively illustrate the authors' points. Each chapter ends with a dialogue in which the authors refine their arguments against the vigorous skepticism of the fictional “I.M.” (for Ipcha Mistabra—Aramaic for “the opposite conjecture”). The extensive new chapter, presented engagingly as a dialogue with I.M., updates the information on each of the four dimensions—with special attention to the epigenetic, where there has been an explosion of new research. Praise for the first edition “With courage and verve, and in a style accessible to general readers, Jablonka and Lamb lay out some of the exciting new pathways of Darwinian evolution that have been uncovered by contemporary research.” —Evelyn Fox Keller, MIT, author of Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines “In their beautifully written and impressively argued new book, Jablonka and Lamb show that the evidence from more than fifty years of molecular, behavioral and linguistic studies forces us to reevaluate our inherited understanding of evolution.” —Oren Harman, The New Republic “It is not only an enjoyable read, replete with ideas and facts of interest but it does the most valuable thing a book can do—it makes you think and reexamine your premises and long-held conclusions.” —Adam Wilkins, BioEssays
Since its origin in the early 20th century, the Modern Synthesis theory of evolution has grown to become the orthodox view on the process of organic evolution. Its central defining feature is the prominence it accords to genes in the explanation of evolutionary dynamics. Since the advent of the 21st century, however, the Modern Synthesis has been subject to repeated and sustained challenges. These are largely empirically driven. In the last two decades, evolutionary biology has witnessed unprecedented growth in the understanding of those processes that underwrite the development of organisms and the inheritance of characters. The empirical advances usher in challenges to the conceptual foundations of evolutionary theory. The extent to which the new biology challenges the Modern Synthesis has been the subject of lively debate. Many current commentators charge that the new biology of the 21st century calls for a revision, extension, or wholesale rejection of the Modern Synthesis Theory of evolution. Defenders of the Modern Synthesis maintain that the theory can accommodate the exciting new advances in biology. The original essays collected in this volume survey the various challenges to the Modern Synthesis arising from the new biology of the 21st century. The authors are evolutionary biologists, philosophers of science, and historians of biology from Europe and North America. Each of the essays discusses a particular challenge to the Modern Synthesis treatment of inheritance, development, or adaptation. Taken together, the essays cover a spectrum of views, from those that contend that the Modern Synthesis can rise to the challenges of the new biology, with little or no revision required, to those that call for the abandonment of the Modern Synthesis. The collection will be of interest to researchers and students in evolutionary biology, and the philosophy and history of the biological sciences.
Bonduriansky and Day challenge the premise that genes alone mediate the transmission of biological information across generations and provide the raw material for natural selection. They explore the latest research showing that what happens during our lifetimes--and even our parents' and grandparents' lifetimes--can influence the features of our descendants. Based on this evidence, Bonduriansky and Day develop an extended concept of heredity that upends ideas about how traits can and cannot be transmitted across generations, opening the door to a new understanding of inheritance, evolution, and even human health. --Adapted from publisher description.
A comprehensive treatment of the concept of causation in evolutionary biology that makes clear its central role in both historical and contemporary debates. Most scientific explanations are causal. This is certainly the case in evolutionary biology, which seeks to explain the diversity of life and the adaptive fit between organisms and their surroundings. The nature of causation in evolutionary biology, however, is contentious. How causation is understood shapes the structure of evolutionary theory, and historical and contemporary debates in evolutionary biology have revolved around the nature of causation. Despite its centrality, and differing views on the subject, the major conceptual issues regarding the nature of causation in evolutionary biology are rarely addressed. This volume fills the gap, bringing together biologists and philosophers to offer a comprehensive, interdisciplinary treatment of evolutionary causation. Contributors first address biological motivations for rethinking evolutionary causation, considering the ways in which development, extra-genetic inheritance, and niche construction challenge notions of cause and process in evolution, and describing how alternative representations of evolutionary causation can shed light on a range of evolutionary problems. Contributors then analyze evolutionary causation from a philosophical perspective, considering such topics as causal entanglement, the commingling of organism and environment, and the relationship between causation and information. Contributors John A. Baker, Lynn Chiu, David I. Dayan, Renée A. Duckworth, Marcus W Feldman, Susan A. Foster, Melissa A. Graham, Heikki Helanterä, Kevin N. Laland, Armin P. Moczek, John Odling-Smee, Jun Otsuka, Massimo Pigliucci, Arnaud Pocheville, Arlin Stoltzfus, Karola Stotz, Sonia E. Sultan, Christoph Thies, Tobias Uller, Denis M. Walsh, Richard A. Watson
Reductionism is a widely endorsed methodology among biologists, a metaphysical theory advanced to vindicate the biologist's methodology, and an epistemic thesis those opposed to reductionism have been eager to refute. While the methodology has gone from strength to strength in its history of achievements, the metaphysical thesis grounding it remained controversial despite its significant changes over the last 75 years of the philosophy of science. Meanwhile, antireductionism about biology, and especially Darwinian natural selection, became orthodoxy in philosophy of mind, philosophy of science, and philosophy of biology. This Element expounds the debate about reductionism in biology, from the work of the post-positivists to the end of the century debates about supervenience, multiple realizability, and explanatory exclusion. It shows how the more widely accepted 21st century doctrine of 'mechanism' - reductionism with a human face - inherits both the strengths and the challenges of the view it has largely supplanted.
How did life start? Is the evolution of life describable by any physics-like laws? Stuart Kauffman's latest book offers an explanation-beyond what the laws of physics can explain-of the progression from a complex chemical environment to molecular reproduction, metabolism and to early protocells, and further evolution to what we recognize as life. Among the estimated one hundred billion solar systems in the known universe, evolving life is surely abundant. That evolution is a process of "becoming" in each case. Since Newton, we have turned to physics to assess reality. But physics alone cannot tell us where we came from, how we arrived, and why our world has evolved past the point of unicellular organisms to an extremely complex biosphere. Building on concepts from his work as a complex systems researcher at the Santa Fe Institute, Kauffman focuses in particular on the idea of cells constructing themselves and introduces concepts such as "constraint closure." Living systems are defined by the concept of "organization" which has not been focused on in enough in previous works. Cells are autopoetic systems that build themselves: they literally construct their own constraints on the release of energy into a few degrees of freedom that constitutes the very thermodynamic work by which they build their own self creating constraints. Living cells are "machines" that construct and assemble their own working parts. The emergence of such systems-the origin of life problem-was probably a spontaneous phase transition to self-reproduction in complex enough prebiotic systems. The resulting protocells were capable of Darwin's heritable variation, hence open-ended evolution by natural selection. Evolution propagates this burgeoning organization. Evolving living creatures, by existing, create new niches into which yet further new creatures can emerge. If life is abundant in the universe, this self-constructing, propagating, exploding diversity takes us beyond physics to biospheres everywhere.
The book formulates an evolutionary approach to the theory of knowledge, based on the parallelism between the natural selection of our cognitive capacities and the rational selection of the methodological processes by which we put them to work. The former reflects the biological evolution of homo sapiens, the latter the cultural evolution of homo quaerens through the development of a scientific community of inquirers with its characteristic practices. This dual aspect of cognitive evolution indicates that our human cognitive accomplishments are limited by our particular evolutionary attunement to the world's scheme of things and are bound to reflect the character of our particular evolutionary niche. The resulting doctrinal position is one of a realistic relativism.
Interdisciplinary perspectives on cultural evolution that reject meme theory in favor of a complex understanding of dynamic change over time How do cultures change? In recent decades, the concept of the meme, posited as a basic unit of culture analogous to the gene, has been central to debates about cultural transformation. Despite the appeal of meme theory, its simplification of complex interactions and other inadequacies as an explanatory framework raise more questions about cultural evolution than it answers. In Beyond the Meme, William C. Wimsatt and Alan C. Love assemble interdisciplinary perspectives on cultural evolution, providing a nuanced understanding of it as a process in which dynamic structures interact on different scales of size and time. By focusing on the full range of evolutionary processes across distinct contexts, from rice farming to scientific reasoning, this volume demonstrates how a thick understanding of change in culture emerges from multiple disciplinary vantage points, each of which is required to understand cultural evolution in all its complexity. The editors provide an extensive introductory essay to contextualize the volume, and Wimsatt contributes a separate chapter that systematically organizes the conceptual geography of cultural processes and phenomena. Any adequate account of the transmission, elaboration, and evolution of culture must, this volume argues, recognize the central roles that cognitive and social development play in cultural change and the complex interplay of technological, organizational, and institutional structures needed to enable and coordinate these processes. Contributors: Marshall Abrams, U of Alabama at Birmingham; Claes Andersson, Chalmers U of Technology; Mark A. Bedau, Reed College; James A. Evans, U of Chicago; Jacob G. Foster, U of California, Los Angeles; Michel Janssen, U of Minnesota; Sabina Leonelli, U of Exeter; Massimo Maiocchi, U of Chicago; Joseph D. Martin, U of Cambridge; Salikoko S. Mufwene, U of Chicago; Nancy J. Nersessian, Georgia Institute of Technology and Harvard U; Paul E. Smaldino, U of California, Merced; Anton Törnberg, U of Gothenburg; Petter Törnberg, U of Amsterdam; Gilbert B. Tostevin, U of Minnesota.