Infinitesimal

Infinitesimal

Author: Amir Alexander

Publisher: Simon and Schuster

Published: 2014-07-03

Total Pages: 317

ISBN-13: 1780745338

DOWNLOAD EBOOK

On August 10, 1632, five leading Jesuits convened in a sombre Roman palazzo to pass judgment on a simple idea: that a continuous line is composed of distinct and limitlessly tiny parts. The doctrine would become the foundation of calculus, but on that fateful day the judges ruled that it was forbidden. With the stroke of a pen they set off a war for the soul of the modern world. Amir Alexander takes us from the bloody religious strife of the sixteenth century to the battlefields of the English civil war and the fierce confrontations between leading thinkers like Galileo and Hobbes. The legitimacy of popes and kings, as well as our modern beliefs in human liberty and progressive science, hung in the balance; the answer hinged on the infinitesimal. Pulsing with drama and excitement, Infinitesimal will forever change the way you look at a simple line.


Infinitesimal Calculus

Infinitesimal Calculus

Author: James M. Henle

Publisher: Courier Corporation

Published: 2014-01-15

Total Pages: 146

ISBN-13: 0486151018

DOWNLOAD EBOOK

Introducing calculus at the basic level, this text covers hyperreal numbers and hyperreal line, continuous functions, integral and differential calculus, fundamental theorem, infinite sequences and series, infinite polynomials, more. 1979 edition.


A Primer of Infinitesimal Analysis

A Primer of Infinitesimal Analysis

Author: John L. Bell

Publisher: Cambridge University Press

Published: 2008-04-07

Total Pages: 7

ISBN-13: 0521887186

DOWNLOAD EBOOK

A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.


Models for Smooth Infinitesimal Analysis

Models for Smooth Infinitesimal Analysis

Author: Ieke Moerdijk

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 401

ISBN-13: 147574143X

DOWNLOAD EBOOK

The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.


Cauchy's Calcul Infinitésimal

Cauchy's Calcul Infinitésimal

Author: Dennis M. Cates

Publisher: Springer

Published: 2019-04-03

Total Pages: 265

ISBN-13: 3030110362

DOWNLOAD EBOOK

This book is a complete English translation of Augustin-Louis Cauchy's historic 1823 text (his first devoted to calculus), Résumé des leçons sur le calcul infinitésimal, "Summary of Lectures on the Infinitesimal Calculus," originally written to benefit his École Polytechnique students in Paris. Within this single text, Cauchy succinctly lays out and rigorously develops all of the topics one encounters in an introductory study of the calculus, from his classic definition of the limit to his detailed analysis of the convergence properties of infinite series. In between, the reader will find a full treatment of differential and integral calculus, including the main theorems of calculus and detailed methods of differentiating and integrating a wide variety of functions. Real, single variable calculus is the main focus of the text, but Cauchy spends ample time exploring the extension of his rigorous development to include functions of multiple variables as well as complex functions. This translation maintains the same notation and terminology of Cauchy's original work in the hope of delivering as honest and true a Cauchy experience as possible so that the modern reader can experience his work as it may have been like 200 years ago. This book can be used with advantage today by anyone interested in the history of the calculus and analysis. In addition, it will serve as a particularly valuable supplement to a traditional calculus text for those readers who desire a way to create more texture in a conventional calculus class through the introduction of original historical sources.


The Origins of Infinitesimal Calculus

The Origins of Infinitesimal Calculus

Author: Margaret E. Baron

Publisher: Elsevier

Published: 2014-05-09

Total Pages: 313

ISBN-13: 1483280926

DOWNLOAD EBOOK

The Origins of Infinitesimal Calculus focuses on the evolution, development, and applications of infinitesimal calculus. The publication first ponders on Greek mathematics, transition to Western Europe, and some center of gravity determinations in the later 16th century. Discussions focus on the growth of kinematics in the West, latitude of forms, influence of Aristotle, axiomatization of Greek mathematics, theory of proportion and means, method of exhaustion, discovery method of Archimedes, and curves, normals, tangents, and curvature. The manuscript then examines infinitesimals and indivisibles in the early 17th century and further advances in France and Italy. Topics include the link between differential and integral processes, concept of tangent, first investigations of the cycloid, and arithmetization of integration methods. The book reviews the infinitesimal methods in England and Low Countries and rectification of arcs. The publication is a vital source of information for historians, mathematicians, and researchers interested in infinitesimal calculus.


Infinitesimal Differences

Infinitesimal Differences

Author: Ursula Goldenbaum

Publisher: Walter de Gruyter

Published: 2008-11-03

Total Pages: 337

ISBN-13: 3110211866

DOWNLOAD EBOOK

The essays offer a unified and comprehensive view of 17th century mathematical and metaphysical disputes over status of infinitesimals, particularly the question whether they were real or mere fictions. Leibniz's development of the calculus and his understanding of its metaphysical foundation are taken as both a point of departure and a frame of reference for the 17th century discussions of infinitesimals, that involved Hobbes, Wallis, Newton, Bernoulli, Hermann, and Nieuwentijt. Although the calculus was undoubtedly successful in mathematical practice, it remained controversial because its procedures seemed to lack an adequate metaphysical or methodological justification. The topic is also of philosophical interest, because Leibniz freely employed the language of infinitesimal quantities in the foundations of his dynamics and theory of forces. Thus, philosophical disputes over the Leibnizian science of bodies naturally involve questions about the nature of infinitesimals. The volume also includes newly discovered Leibnizian marginalia in the mathematical writings of Hobbes.


The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics

The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics

Author: John L. Bell

Publisher: Springer Nature

Published: 2019-09-09

Total Pages: 320

ISBN-13: 3030187071

DOWNLOAD EBOOK

This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.