This volume showcases upcoming trends and applications that are set to redefine our technological landscape. Chapters comprise referenced reviews focused on the recent research that introduces new methods and techniques for using AI in Industry 4.0, and the integration of Internet of Things (IoT) to drive new industrial processes. The contributors have discussed challenges in industry 4.0 along with the applications and the way it is shaping different industries. Key themes: AI in Communication Media: Uncover the latest research, with insights into the challenges and adoption of AI in remote processes. New AI Techniques for Industry 4.0: Learn about technologies such as blockchains and applications of machine learning, deep learning, and image processing. IoT and AI for Smart Systems: Understand IoT with a special focus on enhancing smart systems, in different industries, including agriculture and transaction processing Explorable AI: Gain a quick understanding of Explainable AI (XAI) and its role in improving the predictability and transparency of IoT applications. Whether you're a tech enthusiast, researcher, or industry professional, this book offers a glimpse into the innovative world of Industry 4.0 and its intersection with AI, IoT, big data, and cloud computing.
Integration of IoT (Internet of Things) with big data and cloud computing has brought forward numerous advantages and challenges such as data analytics, integration, and storage. This book highlights these challenges and provides an integrating framework for these technologies, illustrating the role of blockchain in all possible facets of IoT security. Furthermore, it investigates the security and privacy issues associated with various IoT systems along with exploring various machine learning-based IoT security solutions. This book brings together state-of-the-art innovations, research activities (both in academia and in industry), and the corresponding standardization impacts of 5G as well. Aimed at graduate students, researchers in computer science and engineering, communication networking, IoT, machine learning and pattern recognition, this book Showcases the basics of both IoT and various security paradigms supporting IoT, including Blockchain Explores various machine learning-based IoT security solutions and highlights the importance of IoT for industries and smart cities Presents various competitive technologies of Blockchain, especially concerned with IoT security Provides insights into the taxonomy of challenges, issues, and research directions in IoT-based applications Includes examples and illustrations to effectively demonstrate the principles, algorithm, applications, and practices of security in the IoT environment
In manufacturing, entrenched challenges like costly maintenance, operational inefficiencies, and product defects loom large, casting shadows over industry progress. Despite the promise of Industry 4.0 and the proliferation of data-driven technologies, many enterprises need help to effectively harness the transformative power of artificial intelligence (AI). The gap between AI's potential and its practical application persists, hindering manufacturing companies from achieving optimal efficiency, competitiveness, and sustainability. Industry Applications of Thrust Manufacturing: Convergence with Real-Time Data and AI is a groundbreaking book meticulously crafted to address the pressing needs of academic scholars and industry professionals. Offering a nuanced exploration of AI's role in revolutionizing manufacturing, this book serves as a beacon of clarity amidst the complexities of modern industrial landscapes. Whether seeking to optimize operational workflows, mitigate risks, or unlock untapped opportunities, this definitive guide offers invaluable insights and actionable strategies to propel manufacturing enterprises into a future of innovation, efficiency, and sustainable growth.
Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
This book gathers a collection of high-quality peer-reviewed research papers presented at the International Conference on Big Data, IoT and Machine Learning (BIM 2021), held in Cox’s Bazar, Bangladesh, during 23–25 September 2021. The book covers research papers in the field of big data, IoT and machine learning. The book will be helpful for active researchers and practitioners in the field.
This book provides a holistic perspective on Digital Twin (DT) technologies, and presents cutting-edge research in the field. It assesses the opportunities that DT can offer for smart cities, and covers the requirements for ensuring secure, safe and sustainable smart cities. Further, the book demonstrates that DT and its benefits with regard to: data visualisation, real-time data analytics, and learning leading to improved confidence in decision making; reasoning, monitoring and warning to support accurate diagnostics and prognostics; acting using edge control and what-if analysis; and connection with back-end business applications hold significant potential for applications in smart cities, by employing a wide range of sensory and data-acquisition systems in various parts of the urban infrastructure. The contributing authors reveal how and why DT technologies that are used for monitoring, visualising, diagnosing and predicting in real-time are vital to cities’ sustainability and efficiency. The concepts outlined in the book represents a city together with all of its infrastructure elements, which communicate with each other in a complex manner. Moreover, securing Internet of Things (IoT) which is one of the key enablers of DT’s is discussed in details and from various perspectives. The book offers an outstanding reference guide for practitioners and researchers in manufacturing, operations research and communications, who are considering digitising some of their assets and related services. It is also a valuable asset for graduate students and academics who are looking to identify research gaps and develop their own proposals for further research.
World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress.
This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: IntroductionDigitising industry and IoT as key enabler in the new era of Digital EconomyIoT Strategic Research and Innovation Agenda IoT in the digital industrial context: Digital Single MarketIntegration of heterogeneous systems and bridging the virtual, digital and physical worldsFederated IoT platforms and interoperabilityEvolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces. Innovation through IoT ecosystemsTrust-based IoT end-to-end security, privacy framework User acceptance, societal, ethical aspects and legal issuesInternet of Things Applications
Today, billions of devices are Internet-connected, IoT standards and protocols are stabilizing, and technical professionals must increasingly solve real problems with IoT technologies. Now, five leading Cisco IoT experts present the first comprehensive, practical reference for making IoT work. IoT Fundamentals brings together knowledge previously available only in white papers, standards documents, and other hard-to-find sources—or nowhere at all. The authors begin with a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions. Next, they walk through each key technology, protocol, and technical building block that combine into complete IoT solutions. Building on these essentials, they present several detailed use cases, including manufacturing, energy, utilities, smart+connected cities, transportation, mining, and public safety. Whatever your role or existing infrastructure, you’ll gain deep insight what IoT applications can do, and what it takes to deliver them. Fully covers the principles and components of next-generation wireless networks built with Cisco IOT solutions such as IEEE 802.11 (Wi-Fi), IEEE 802.15.4-2015 (Mesh), and LoRaWAN Brings together real-world tips, insights, and best practices for designing and implementing next-generation wireless networks Presents start-to-finish configuration examples for common deployment scenarios Reflects the extensive first-hand experience of Cisco experts
This book considers all aspects of managing the complexity of Multimedia Big Data Computing (MMBD) for IoT applications and develops a comprehensive taxonomy. It also discusses a process model that addresses a number of research challenges associated with MMBD, such as scalability, accessibility, reliability, heterogeneity, and Quality of Service (QoS) requirements, presenting case studies to demonstrate its application. Further, the book examines the layered architecture of MMBD computing and compares the life cycle of both big data and MMBD. Written by leading experts, it also includes numerous solved examples, technical descriptions, scenarios, procedures, and algorithms.