Sponsored jointly by the American Society of Mechanical Engineers and International Material Management Society, this single source reference is designed to meet today's need for updated technical information on planning, installing and operating materials handling systems. It not only classifies and describes the standard types of materials handling equipment, but also analyzes the engineering specifications and compares the operating capabilities of each type. Over one hundred professionals in various areas of materials handling present efficient methods, procedures and systems that have significantly reduced both manufacturing and distribution costs.
This book presents the main outcomes of the first European research project on the seismic behavior of adjustable steel storage pallet racking systems. In particular, it describes a comprehensive and unique set of full-scale tests designed to assess such behavior. The tests performed include cyclic tests of full-scale rack components, namely beam-to-upright connections and column base connections; static and dynamic tests to assess the friction factor between pallets and rack beams; full-scale pushover and pseudodynamic tests of storage racks in down-aisle and cross-aisle directions; and full-scale dynamic tests on two-bay, three-level rack models. The implications of the findings of this extensive testing regime on the seismic behavior of racking systems are discussed in detail, highlighting e.g. the confirmation that under severe dynamic conditions “sliding” is the main factor influencing rack response. This work was conceived during the development of the SEISRACKS project. Its outcomes will contribute significantly to increasing our knowledge of the structural behavior of racks under earthquake conditions and should inform future rack design.
Continuing the best-selling tradition of the Handbook of Structural Engineering, this second edition is a comprehensive reference to the broad spectrum of structural engineering, encapsulating the theoretical, practical, and computational aspects of the field. The contributors cover traditional and innovative approaches to analysis, design, and rehabilitation. New topics include: fundamental theories of structural dynamics; advanced analysis; wind- and earthquake-resistant design; design of prestressed structures; high-performance steel, concrete, and fiber-reinforced polymers; semirigid frame structures; structural bracing; and structural design for fire safety.
This new book synthesizes a wide range of interdisciplinary literature to provide the state-of-the art of biomedical implants. It discusses materials and explains the three basic requirements for implant success from a surface engineering perspective: biological compatibility, biomechanical compatibility, morphological compatibility. Biomedical, mechanical, and materials engineers will find this book indispensable for understanding proper treatment of implant surfaces in order to achieve clinical success. Highlights include: • Coverage of surface engineering of polymer, metallic, ceramic and composite implant materials; • Coverage of chemical, mechanical, physical, thermal, and combined surface modification technologies; • Explanations of interfacial reaction between vital tissue and non-vital implant surface; and • Methodologies and technologies for modification of surface layer/zone to promote the osteo-integration, the ultimate success for biomedical implants in both dental and medical practice.
During the past few decades, the number of large public warehouse stores (often referred to as big-box stores) across the nation has grown significantly, changing both consumer buying habits and the public's risk of injury during earthquakes. During an earthquake, occupant safety in a big-box store depends on both the structural performance of the building and on the performance of the storage racks and their contents. Earthquake ground motions can cause storage racks to collapse or overturn if they are not properly designed, installed, maintained, and loaded. In addition, goods stored on the racks may spill or topple off. Both occurrences pose a life-safety risk to the exposed shopping public. The immediate stimulus for the project that resulted in this report was a 2003 request from the State of Washington to the Federal Emergency Management Agency (FEMA) for guidance concerning the life-safety risk posed by the storage racks in publicly accessible areas of retail stores, especially the risk of rack collapse of loss of stored goods during an earthquake. FEMA asked the Building Seismic Safety Council (BSSC) to develop the requested guidance. To do so, the BSSC established a Rack Project Task Group composed of practicing engineers, storage rack designers, researchers, representatives of the Rack Manufacturers Institute (RMI) and the Retail Industry Leaders Association, and members of applicable technical subcommittees responsible for updating the NEHRP Recommended Provisions. In developing this guidance document, the Task Group focused primarily on steel single selective pallet storage racks. It reviewed available information on storage rack performance during earthquakes and the background on the development of standards and code requirements for storage racks; assessed seismic requirements for storage racks and current practices with respect to rack design, maintenance and operations, quality assurance, and post-earthquake inspections; and examined available research and testing data. Based on its study, the Task Group developed short-term recommendations to improve current practice and formulated long-term recommendations to serve as the basis for improved standards documents such as the NEHRP Recommended Provisions, ASCE 7, and the RMI-developed storage rack specification. Over the near term, the Task Group recommends that the 2003 NEHRP Recommended Provisions requirements for steel single selective pallet storage rack design be followed and that connections be checked in accordance with a procedure to be developed by RMI. The Task Group also recommends that additional guidance presented in this report be voluntarily adopted by store owners and operators. Further, given the fact that maintenance and use of storage racks is a key element to their acceptable performance during earthquakes, store owners and operators should adopt an appropriate quality assurance plan; as a minimum, the best self-imposed practices of store owners and operators should be maintained. The Task Group's primary long-term recommendation is that the RMI specification be brought into conformance with the 2003 NEHRP Recommended Provisions, which is the basis for seismic requirements found in current seismic design standards and model building codes. The Task Group also recommends that optional performance-based and limit state procedures and component cyclic testing procedures be incorporated into the RMI-developed specification. Compliance with these procedures will demonstrate that the storage racks have the capacity to resist maximum considered earthquake ground motions without collapse. It also is recommended that regulatory bodies periodically review the quality assurance programs of stores and implement any regulations needed to satisfy life-safety concerns that relate to the securing of rack contents and rack maintenance and use.
Many important advances in designing high-performance structures have occurred over the last several years. Structural engineers need an authoritative source of information that thoroughly and concisely covers the foundational principles of the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, this book provides a tightly focused, economical guide to the theoretical, practical, and computational aspects of structural design. Expert contributors discuss a wide variety of structures, including steel, aluminum, timber, and prestressed concrete, as well as reliability-based design and structures based on wind engineering.
Safety and Health for Engineers, 3rd Edition, addresses the fundamentals of safety, legal aspects, hazard recognition and control, and techniques for managing safety decisions, as well as: Completely revises and updates all 38 chapters in the book New edition adds more than 110 stories and cases from practice to illustrate various topics or issues New topics on adapting to new safety concerns that arise from technology innovations; convergence of safety, health and environmental departments in many organizations; the concept of prevention through design; and emphasis on safety management systems and risk management and analysis Includes learning exercises and computational examples based on real world situations along with in-depth references for each chapter Includes a detailed solutions manual for academic adopters Covers the primary topics included in certification exams for professional safety, such as CSP/ASP
The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Third Edition of the classic text provides you with more of the detailed, up-to-the-minute technical information and expert guidance you need to make optimum use of this incredibly versatile material for building construction. Wei-Wen Yu, an internationally respected authority in the field, draws upon decades of experience in cold-formed steel design, research, teaching, and development of design specifications to provide guidance on all practical aspects of cold-formed steel design for manufacturing, civil engineering, and building applications. Throughout the book, he describes the structural behavior of cold-formed steel members and connections from both the theoretical and experimental perspectives, and discusses the rationale behind the AISI design provisions. Cold-Formed Steel Design, Third Edition features complete coverage of: * AISI 1996 cold-formed steel design specification with the 1999 supplement * Both ASD and LRFD methods * The latest design procedures for structural members * Updated design information for connections and systems * Contemporary design criteria around the world * The latest computer-aided design techniques Cold-Formed Steel Design, Third Edition is a necessary tool-of-the-trade for structural engineers, manufacturers, construction managers, and architects. It is also an excellent advanced text for college students and researchers in structural engineering, architectural engineering, construction engineering, and related disciplines.
This book provides simplified and refined procedures applicable to design and to accessing design limitations and offers guidance to design specifications, codes and standards currently applied to the stability of metal structures.