Industrial Energy Systems Handbook is a supplementary reading resource for candidates undertaking the Association of Energy Engineers (AEE) Certified Industrial Energy Professional (CIEP) program. Understanding how the various industrial systems work is key to identifying savings opportunities. An overview is given of the global energy situation as at the time of publication which cements the necessity to improve energy intensive processes to become more optimized. Comprehension of opportunities to optimize an industrial energy system starts with the fundamentals of energy, electrical energy and thermal energy, and the importance of energy management systems and industrial energy audits. The main energy consuming systems in industry are covered such as steam, compressed air, motors, drives, fans, pumps, lighting, furnaces, heat exchange systems, and large scale cooling and industrial refrigeration. The instrumentation and control as well as toolkits available rounds off the handbook topics.
The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.
Na ovoju: "Applied Industrial Energy and Environmental Management provides a comprehensive and application oriented approach to the technical and managerial challenges of efficient energy performance in industrial plants. Written by leading practitioners in the field with extensive experience of working with development banks, international aid organizations, and multinational companies, the authors are able to offer real case studies as a basis to their method." "This book will be a valuable resource to practising energy and environmental management engineers, plant managers and consultants in the energy and manufacturing industries. It will also be of interest to graduate engineering and science students taking courses in industrial energy and environmental management."
A comprehensive textbook that integrates tools from technology, economics, markets, and policy to approach energy issues using a dynamic systems and capital-centric perspective. The global energy system is the vital foundation of modern human industrial society. Traditionally studied through separate disciplines of engineering, economics, environment, or public policy, this system can be fully understood only by using an approach that integrates these tools. This textbook is the first to take a dynamic systems perspective on understanding energy systems, tracking energy from primary resource to final energy services through a long and capital-intensive supply chain bounded by both macroeconomic and natural resource systems. The book begins with a framework for understanding how energy is transformed as it moves through the system with the aid of various types of capital, its movement influenced by a combination of the technical, market, and policy conditions at the time. It then examines the three primary energy subsystems of electricity, transportation, and thermal energy, explaining such relevant topics as systems thinking, cost estimation, capital formation, market design, and policy tools. Finally, the book reintegrates these subsystems and looks at their relation to the economic system and the ecosystem that they inhabit. Practitioners and theorists from any field will benefit from a deeper understanding of both existing dynamic energy system processes and potential tools for intervention.
This book is presented to demonstrate how energy efficiency can be achieved in existing systems or in the design of a new system, as well as a guide for energy savings opportunities. Accordingly, the content of the book has been enriched with many examples applied in the industry. Thus, it is aimed to provide energy savings by successfully managing the energy in the readers’ own businesses. The authors primarily present the necessary measurement techniques and measurement tools to be used for energy saving, as well as how to evaluate the methods that can be used for improvements in systems. The book also provides information on how to calculate the investments to be made for these necessary improvements and the payback periods. The book covers topics such as: • Reducing unit production costs by ensuring the reduction of energy costs, • Efficient and quality energy use, • Meeting market needs while maintaining competitive conditions, • Ensuring the protection of the environment by reducing CO2 and CO emissions with energy saving and energy efficiency, • Ensuring the correct usage of systems by carrying out energy audits. In summary, this book explains how to effectively design energy systems and manage energy to increase energy savings. In addition, the study has been strengthened by giving some case studies and their results in the fields of intensive energy consumption in industry. This book is an ideal resource for practitioners, engineers, researchers, academics, employees and investors in the fields of energy, energy management, energy efficiency and energy saving.
The last ten years have seen rapid advances in nanoscience and nanotechnology, allowing unprecedented manipulation of the nanoscale structures controlling solar capture, conversion, and storage. Filled with cutting-edge solar energy research and reference materials, the Handbook of Research on Solar Energy Systems and Technologies serves as a one-stop resource for the latest information regarding different topical areas within solar energy. This handbook will emphasize the application of nanotechnology innovations to solar energy technologies, explore current and future developments in third generation solar cells, and provide a detailed economic analysis of solar energy applications.
Now there is a comprehensive reference to provide tools on implementing an energy audit for any type of facility. Containing forms, checklists and handy working aids, this book is for anyone implementing an energy audit. Accounting procedures, rate of return, analysis and software programs are included to provide evaluation tools for audit recommendations. Technologies for electrical, mechanical and building systems are covered in detail.
Supercritical fluids are increasingly being used in energy conversion and fluid dynamics studies for energy-related systems and applications. These new applications are contributing to both the increase of energy efficiency as well as greenhouse gas reduction. Such research is critical for scientific advancement and industrial innovations that can support environmentally friendly strategies for sustainable energy systems. The Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems is a comprehensive two-volume reference that covers the most recent and challenging issues and outlooks for the applications and innovations of supercritical fluids. The book first converts basic thermo-dynamic behaviors and “abnormal” properties from a thermophysical aspect, then basic heat transfer and flow properties, recent new findings of its physical aspect and indications, chemical engineering properties, micro-nano-scale phenomena, and transient behaviors in fast and critical environments. It is ideal for engineers, energy companies, environmentalists, researchers, academicians, and students studying supercritical fluids and their applications for creating sustainable energy systems.
For the Movers, Shakers, and Policy Makers in Energy Engineering and Related IndustriesThe latest version of a bestselling reference, Energy Efficiency and Renewable Energy Handbook, Second Edition covers the foremost trends and technologies in energy engineering today. This new edition contains the latest material on energy planning and policy, wi