Industrial Applications of Lasers

Industrial Applications of Lasers

Author: John F. Ready

Publisher: Elsevier

Published: 1997-04-25

Total Pages: 623

ISBN-13: 008050860X

DOWNLOAD EBOOK

A practical book with a variety of uses, this book can help applications engineers spark problem-solving techniques through the use of lasers. Industrial Application of Lasers, Second Edition takes the reader through laser fundamentals, unusual properties of laser light, types of practical lasers available, and commonly used accessory equipment. The book also applies this information to existing and developing applications. Current uses of lasers, including laser welding and cutting, electronic fabrication techniques, lightwave communications, laser-based applications in alignment, surveying, and metrology are all covered as well as discussing the potential for future applications such as all-optical computers,remote environmental monitoring, and laser-assisted thermonuclear fusion. Explains basic laser fundamentals as well as emphasizing how lasers are used for real applications in industry Describes the importance of laser safety Discusses potentially important future applications such as remote environmental monitoring Includes rare expert lore and opinion


Industrial Applications of Lasers

Industrial Applications of Lasers

Author: John Ready

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 605

ISBN-13: 0323144780

DOWNLOAD EBOOK

Industrial Applications of Lasers focuses on how lasers have been used for practical applications in industry. This text aims to stimulate the imagination of the readers, who can then evaluate the potential application of lasers to solve their own problems. Comprised of 21 chapters, this book starts with an overview of the fundamental background of lasers, and then discusses the basic principles of how lasers operate. Other chapters provide an understanding of how holograms really work. This text also discusses several topics relevant to lasers, themselves, including the types of practical lasers and laser properties. This book considers laser safety, which is very important for anyone considering a laser application. Finally, this text explores the various developed laser applications, including scribing of ceramics, laser welding and cutting of metals, as well as applications in surveying, alignment, and metrology. This book is a valuable resource to laser technicians, physicists, scientists, researchers, and readers whose interests span a variety of fields.


Laser Processing of Engineering Materials

Laser Processing of Engineering Materials

Author: John Ion

Publisher: Elsevier

Published: 2005-03-22

Total Pages: 589

ISBN-13: 0080492800

DOWNLOAD EBOOK

The complete guide to understanding and using lasers in material processing!Lasers are now an integral part of modern society, providing extraordinary opportunities for innovation in an ever-widening range of material processing and manufacturing applications. The study of laser material processing is a core element of many materials and manufacturing courses at undergraduate and postgraduate level. As a consequence, there is now a vast amount of research on the theory and application of lasers to be absorbed by students, industrial researchers, practising engineers and production managers. Written by an acknowledged expert in the field with over twenty years' experience in laser processing, John Ion distils cutting-edge information and research into a single key text. Essential for anyone studying or working with lasers, Laser Processing of Engineering Materials provides a clear explanation of the underlying principles, including physics, chemistry and materials science, along with a framework of available laser processes and their distinguishing features and variables. This book delivers the knowledge needed to understand and apply lasers to the processing of engineering materials, and is highly recommended as a valuable guide to this revolutionary manufacturing technology. The first single volume text that treats this core engineering subject in a systematic manner Covers the principles, practice and application of lasers in all contemporary industrial processes; packed with examples, materials data and analysis, and modelling techniques


Industrial Applications of Laser Remote Sensing

Industrial Applications of Laser Remote Sensing

Author: Tetsuo Fukuchi

Publisher: Bentham Science Publishers

Published: 2012

Total Pages: 201

ISBN-13: 1608053407

DOWNLOAD EBOOK

This e-book is an essential review of land-based laser sensing methods, such as differential absorption, Raman scattering, laser-induced fluorescence, Doppler effect methods, laser-induced breakdown spectroscopy, and laser ultrasonics, and their respective application to specific industrial needs, such as natural gas leak detection, hydrogen gas leak detection, pollutant detection, wind profiling for windmill sites, minor constituent monitoring and concrete structure health monitoring. Readers will gain an updated overview of laser remote sensing techniques and their applications to the industrial environment.


Lasers

Lasers

Author: Hans Joachim Eichler

Publisher: Springer

Published: 2018-11-19

Total Pages: 507

ISBN-13: 3319998951

DOWNLOAD EBOOK

This book provides a comprehensive overview of laser sources and their applications in various fields of science, industry, and technology. After an introduction to the basics of laser physics, different laser types and materials for lasers are summarized in the context of a historical survey, outlining the evolution of the laser over the past five decades. This includes, amongst other aspects, gas lasers, excimer lasers, the wide range of solid-state and semiconductor lasers, and femtosecond and other pulsed lasers where particular attention is paid to high-power sources. Subsequent chapters address related topics such as laser modulation and nonlinear frequency conversion. In closing, the enormous importance of the laser is demonstrated by highlighting its current applications in everyday life and its potential for future developments. Typical applications in advanced material processing, medicine and biophotonics as well as plasma and X-ray generation for nanoscale lithography are discussed. The book provides broad and topical coverage of laser photonics and opto-electronics, focusing on significant findings and recent advances rather than in-depth theoretical studies. Thus, it is intended not only for university students and engineers, but also for scientists and professionals applying lasers in biomedicine, material processing and everyday consumer products. Further, it represents essential reading for engineers using or developing high-power lasers for scientific or industrial applications.


Laser Material Processing

Laser Material Processing

Author: William M. Steen

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 416

ISBN-13: 1447137523

DOWNLOAD EBOOK

New chapters on bending and cleaning reflect the changes in the field since the last edition, completing the range of practical knowledge about the processes possible with lasers already familiar to users of this well-known text. Professor Steen's lively presentation is supported by a number of original cartoons by Patrick Wright and Noel Ford, which will bring a smile to your face and ease the learning process. From the reviews: "...well organized, and the text is very practical...The engineering community will find this book informative and useful." (OPTICS AND PHOTONICS NEWS, July/August 2005)


Laser Machining

Laser Machining

Author: George Chryssolouris

Publisher: Springer Science & Business Media

Published: 2013-04-09

Total Pages: 290

ISBN-13: 1475740840

DOWNLOAD EBOOK

Laser Machining: Theory and Practice addresses state-of-the-art laser machining in a way useful for research- ers, academicians and practitioners, particularly manufacturing engineers, who are considering lasers as a solution to the machining requirements of their factories and plants. This book provides detailed information on the theory behind laser machining, as well as its requirements, uses and applications. In order to place laser machining in its correct context, the author begins with an overview of conventional material removal processes and go on to describe in detail the physical mechanisms involved in lasers, the different types of lasers involved in laser machining, and laser machining systems, which include optics, positioning systems, manipulators, etc. The theoretical treatment of the laser includes a section on the basics of heat transfer and fluid mechanics, and analyses of one, two and three-dimensional laser machining processes. The book closes with a description of state-of-the-art laser machining applications in research and industrial practice.


Laser Processing of Materials

Laser Processing of Materials

Author: Peter Schaaf

Publisher: Springer Science & Business Media

Published: 2010-07-28

Total Pages: 241

ISBN-13: 3642132812

DOWNLOAD EBOOK

Laser materials processing has made tremendous progress and is now at the forefront of industrial and medical applications. The book describes recent advances in smart and nanoscaled materials going well beyond the traditional cutting and welding applications. As no analytical methods are described the examples are really going into the details of what nowadways is possible by employing lasers for sophisticated materials processing giving rise to achievements not possible by conventional materials processing.


Industrial Applications Of Ultrafast Lasers

Industrial Applications Of Ultrafast Lasers

Author: Richard A Haight

Publisher: World Scientific

Published: 2018-03-16

Total Pages: 208

ISBN-13: 981456902X

DOWNLOAD EBOOK

This book describes the application of ultrafast laser science and technology in materials and processing relevant to industry today, including ultrafast laser ablation where fundamental studies have led to the development of the world's first femtosecond photomask repair tool. Semiconductor manufacturing companies worldwide use the tool to repair photomask defects, saving hundreds of millions in production costs. The most up-to-date ultrafast laser technologies are described and methods to generate high harmonics for photoelectron spectroscopy of industrially important materials are covered, with an emphasis on practical laboratory implementation. Basic device physics merged with photoemission studies from single- and polycrystalline materials are described. Extensions to new methods for extracting key device properties of metal-oxide-semiconductor structures, including band offsets, effective work functions, semiconductor band bending and defect-related charging in a number of technologically important gate oxides are detailed. Polycrystalline photovoltaic materials and heterostructures as well as organic light emitting materials are covered. This book describes both the history, and most recent applications of ultrafast laser science to industrially relevant materials, processes and devices.