Volume 4 of the Handbook of Colloid and Interface Science is a survey into the applications of colloids in a variety of fields, based on theories presented in Volumes 1 and 2. The Handbook provides a complete understanding of how colloids and interfaces can be applied in materials science, chemical engineering, and colloidal science. It is ideally suited as reference work for research scientists, universities, and industries.
Volume 4 of the Handbook of Colloid and Interface Science is a survey into the applications of colloids in a variety of fields, based on theories presented in Volumes 1 and 2. The Handbook provides a complete understanding of how colloids and interfaces can be applied in materials science, chemical engineering, and colloidal science. It is ideally suited as reference work for research scientists, universities, and industries.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
As the sequel to the proceedings of the International Conference of Continuum Mechanics Focusing on Singularities (CoMFoS15), the proceedings of CoMFoS16 present further advances and new topics in mathematical theory and numerical simulations related to various aspects of continuum mechanics. These include fracture mechanics, shape optimization, modeling of earthquakes, material structure, interface dynamics and complex systems.. The authors are leading researchers with a profound knowledge of mathematical analysis from the fields of applied mathematics, physics, seismology, engineering, and industry. The book helps readers to understand how mathematical theory can be applied to various industrial problems, and conversely, how industrial problems lead to new mathematical challenges.
A practical book with a variety of uses, this book can help applications engineers spark problem-solving techniques through the use of lasers. Industrial Application of Lasers, Second Edition takes the reader through laser fundamentals, unusual properties of laser light, types of practical lasers available, and commonly used accessory equipment. The book also applies this information to existing and developing applications. Current uses of lasers, including laser welding and cutting, electronic fabrication techniques, lightwave communications, laser-based applications in alignment, surveying, and metrology are all covered as well as discussing the potential for future applications such as all-optical computers,remote environmental monitoring, and laser-assisted thermonuclear fusion. - Explains basic laser fundamentals as well as emphasizing how lasers are used for real applications in industry - Describes the importance of laser safety - Discusses potentially important future applications such as remote environmental monitoring - Includes rare expert lore and opinion
A guide to current and potential industrial applications of shape selective zeolite catalysis. A manual for workers in the field--and a bridge of technology transfer among various industries--this reference explains the fundamentals of zeolite catalysis, and describes the relation between catalyst structure and catalytic activity, and methods of achieving molecular shape selectivity. Includes chemical reactions using shape selective catalysts, and industrial processes using shape selective zeolites. Potential applications of the technology are in areas such as oil production, shale oil, coal, natural gas, internal combustion engine modification, biomass conversion, and the fermentation, chemical, and waste recovery industries. Annotation(c) 2003 Book News, Inc., Portland, OR (booknews.com)
Presenting breakthrough research pertinent to scientists in a wide range of disciplines-from medicine and biotechnology to cosmetics and pharmacy-this Second Edition provides practical approaches to complex formulation problems encountered in the development of particulate delivery systems at the micro- and nano-size level. Completely revised and e
This reference is a "must-read": It explains how an effective and economically viable enzymatic process in industry is developed and presents numerous successful examples which underline the efficiency of biocatalysis.
Environmental considerations are increasingly shaping the development of many industries. This is an overview of surfactants and the environment. It goes on to look at new surfactants derived from renewable, "natural" resources such as sucrose, seaweed and starch. Other chapters review a decade of change in the surfactant industry and assess future market trends. Some of the developments in surfactant technology are presented, including "gemini" twin-chained surfactants, sulfobetaines, alkyl phosphates and the use of alkyl alkoxylates and alkyl glucosides in highly alkaline solutions. The volume takes a practical approach throughout.
Marine Enzymes Biotechnology: Production and Industrial Applications, Part II - Marine Organisms Producing Enzymes provides a huge treasure trove of information on marine organisms. Nowadays, marine organisms are good candidates for enzymes production and have been recognized as a rich source of biological molecules that are of potential interest to various industries. Marine enzymes such as amylases, carboxymethylcellulases, proteases, chitinases, keratinases, xylanases, agarases, lipases, peroxidase and tyrosinases are widely used in the industry for the manufacture of pharmaceuticals, foods, beverages, and confectioneries, as well as in textile and leather processing, and in waste water treatment. The majority of the enzymes used in the industry are of microbial origin because microbial enzymes are relatively more stable than the corresponding enzymes derived from plants and animals. - Focuses on the isolation, characterization, and industrial application of marine enzymes - Provides current trends and development of industrial important marine enzymes, including amylases, carboxymethylcellulases, proteases, chitinases, keratinases, xylanases, agarases, lipases, peroxidase, and tyrosinases - Presents insights into current trends and approaches for marine enzymes