Written for both experienced analysts and new graduates or postgraduates starting to use ICP-MS as part of their academic or industrial research, the ICP Mass Spectrometry Handbook provides a thorough description of ICP-MS instrumentation and techniques, giving the reader sufficient knowledge to approach the technique with confidence.
Determination of Trace Elements Edited by Zeev B. Alfassi The best way to determine trace elements! This easy-to-use handbook guides the reader through the maze of all modern analytical operations. Each method is described by an expert in the field. The book highlights the advantages and disadvantages of individual techniques and enables pharmacologists, environmentalists, material scientists, and food industry to select a judicious procedure for their trace element analysis.
Since the introduction of the first commercial inductively coupled plasma mass spectrometry (ICP-MS) instruments in 1983, the technique has gained rapid and wide acceptance in many analytical laboratories. There are now well over 400 instruments installed worldwide, which are being used in a range of disciplines for the analysis of geological, environmental, water, medical, biological, metallurgical, nuclear and industrial samples. Experience oflCP-MS in many laboratories is limited, and there is therefore a need for a handbook containing practical advice in addition to fundamental informa tion. Such a handbook would be useful not only to users new to the technique, but also to users with some experience who wish to expand their knowledge of the subject. Therefore we have written this book for users in a variety of fields with differing levels of experience and expertise. The first two chapters provide a brief history of ICP-MS and discussions of design concepts, ICP physical processes, and fundamental principles of instrument operation. Armed with this background knowledge, users will be better equipped to evaluate advantages and limitations of the technique. Detailed descriptions and information for instrumental components are provided in chapter 3. Subsequent chapters deal with the practical aspects of sample analysis by ICP-MS. Whether samples are to be analysed in liquid, solid ·or gaseous form is always an important consideration, and there is a wide choice of sample introduction techniques.
This volume draws together topics and methodologies essential for the socio-cultural, mineralogical, and geochemical analysis of archaeological ceramic, one of the most complex and ubiquitous archaeomaterials in the archaeological record. It provides an invaluable resource for archaeologists, anthropologists, and archaeological materials scientists.
Alles über ICP-MS in einem Band! Renommierte Autoren informieren Sie über Theorie, Anwendung und instrumentelle Ausrüstung von A bis Z. Grundlagen werden ebenso behandelt wie neueste Entwicklungen, etwa bei Probenpräparation und Einsatz von Hochfrequenzgeneratoren. Enthält eine Fülle bisher unveröffentlichten Materials!
The first edition of our Handbook was written in 1983. In the preface to the first edition we noted the rapid development of inductively coupled plasma atomic emission spectrometry and its considerable potential for elemental analysis. The intervening five years have seen a substantial growth in ICP applications; much has happened and this is an appropriate time to present a revised edition. The basic approach of the book remains the same. This is a handbook, addressed to the user of the technique who seeks direct, practical advice. A concise summary of the technique is attempted. Detailed, theoretical treatment of the background to the method is not covered. We have, however, thoroughly revised much of the text, and new chapters have been added. These reflect the changes and progress in recent years. We are grateful to Mr Stephen Walton, Dr Gwendy Hall and London and Scandinavian Metallurgical Co. Ltd for their contributions. Chapter 3 (Instrumentation) has been rewritten by Mr Walton, the new Chapter on ICP-mass spectrometry has been written by Dr Hall, and London and Scandinavian provided much of the information for the chapter on metals analysis by ICP-AES. These chapters have been integrated into the book, and a conscious effort has been made to retain the unity of style within the book. New material has been added elsewhere in the book, archaeological materials are considered, pre concentration methods and chemometrics covered more fully.
Volume 11 provides in an authoritative and timely manner in 16 stimulating chapters, written by 40 internationally recognized experts from 11 nations, and supported by more than 2600 references, 35 tables, and over 100 illustrations, many in color, a most up-to-date view on the role of cadmium for life, presently a vibrant research area. MILS-11 covers the bioinorganic chemistry of Cd(II), its biogeochemistry, anthropogenic release into the environment, and speciation in the atmosphere, waters, soils, and sediments. The analytical tools for Cd determination, its imaging in cells, and the use of 113Cd NMR to probe Zn(II) and Ca(II) proteins are summarized, as are Cd(II) interactions with nucleotides, nucleic acids, amino acids, and proteins including metallothioneins. The phytoremediation by Cd(II)-accumulating plants, etc., the toxicology of Cd(II), its damage to mammalian organs, and its role as a carcinogen for humans, are highlighted.
The book provides an up-to-date account of inductively coupled plasmas and their use in atomic emission spectroscopy and mass spectrometry. Specific applications of the use of these techniques are highlighted including applications in environmental, food and industrial analysis. It is written in a distance learning / open learning style; suitable for self study applications. It contains contain self-assessment and discussion questions, worked examples and case studies that allow the reader to test their understanding of the presented material.
The first scientific volume to compile the modern analytical techniques for glass analysis, Modern Methods for Analysing Archaeological and Historical Glass presents an up-to-date description of the physico-chemical methods suitable for determining the composition of glass and for speciation of specific components. This unique resource presents members of Association Internationale pour l'Histoire du Verre, as well as university scholars, with a number of case studies where the effective use of one or more of these methods for elucidating a particular culturo-historical or historo-technical aspect of glass manufacturing technology is documented.