Incremental Seismic Rehabilitation of School Buildings (K-12) (FEMA 395 / December 2002)

Incremental Seismic Rehabilitation of School Buildings (K-12) (FEMA 395 / December 2002)

Author: U. s. Department of Homeland Security

Publisher: Createspace Independent Pub

Published: 2013-01-30

Total Pages: 74

ISBN-13: 9781482311495

DOWNLOAD EBOOK

This manual is intended to assist school administration personnel responsible for the funding and operation of existing school facilities across the United States. This guide and its companion documents are the products of a Federal Emergency Management Agency (FEMA) project to develop the concept of incremental seismic rehabilitation—that is, building modifications that reduce seismic risk by improving seismic performance and that are implemented over an extended period, often in conjunction with other repair, maintenance, or capital improvement activities. The manual was developed after analyzing the management practices of school districts of varying sizes located in various seismic zones in different parts of the United States. It focuses on the identified concerns and decisionmaking practices of K-12 public and private school managers and administrators. Earthquakes are a serious threat to school safety and pose a significant potential liability to school officials and to school districts. School buildings in 39 states are vulnerable to earthquake damage. Unsafe existing buildings expose school administrators to the following risks: Death and injury of students, teachers, and staff; Damage to or collapse of buildings; Damage and loss of furnishings, equipment, and building contents; Disruption of educational programs and school operations. The greatest earthquake risk is associated with existing school buildings that were designed and constructed before the use of modern building codes. For many parts of the United States, this includes buildings built as recently as the early 1990s. Although vulnerable school buildings need to be replaced with safe new construction or rehabilitated to correct deficiencies, for many school districts new construction is limited, at times severely, by budgetary constraints, and seismic rehabilitation is expensive and disruptive. However, an innovative approach that phases a series of discrete rehabilitation actions implemented over a period of several years, incremental seismic rehabilitation, is an effective, affordable, and non-disruptive strategy for responsible mitigation action. It can be integrated efficiently into ongoing facility maintenance and capital improvement operations to minimize cost and disruption. The strategy of incremental seismic rehabilitation makes it possible to get started now on improving earthquake safety in your school district. This manual provides school administrators with the information necessary to assess the seismic vulnerability of their buildings, and to implement a program of incremental seismic rehabilitation for those buildings.


Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds

Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds

Author:

Publisher:

Published: 2004

Total Pages: 366

ISBN-13:

DOWNLOAD EBOOK

This manual is intended to provide guidance for the protection of school buildings and their occupants from natural disasters, and the economic losses and social disruption caused by building damage and destruction. This volume concentrates on grade schools, K-12. This publication covers earthquakes, floods, and high winds. Its intended audience is design professionals and school officials involved in the technical and financial decisions of school construction, repair, and renovations. This publication stresses that identification of hazards and their frequency and careful consideration of design against hazards must be integrated with all other design issues, and be present from the inception of the site selection and building design process. Chapters 1-3 present issues and background information that are common to all hazards. Chapters 4-6 cover the development of specific risk management measures for each of the three main natural hazards. Chapter 1 opens with a brief outline of the past, present, and future of school design. Chapter 2 introduces the concepts of performance-based design in order to obtain required performance from a new or retrofitted facility. Chapter 3 introduces the concept of multihazard design and presents a general description and comparison of the hazards, including charts that show where design against each hazard interacts with design for other hazards. Chapters 4, 5, and 6 outline the steps necessary in the creation of design to address risk management concerns for protection against earthquakes, floods, and high winds, respectively. A guide to the determination of acceptable risk and realistic performance objectives is followed by a discussion to establish the effectiveness of current codes to achieve acceptable performance. A list of acronyms used in the manual are appended. (Contains 13 tables and 124 figures.).


Designing for Earthquakes

Designing for Earthquakes

Author: Federal Emergency Management Agency

Publisher: www.Militarybookshop.CompanyUK

Published: 2006-12

Total Pages: 392

ISBN-13: 9781782661535

DOWNLOAD EBOOK

This full color manual is intended to explain the principles of seismic design for those without a technical background in engineering and seismology. The primary intended audience is that of architects, and includes practicing architects, architectural students and faculty in architectural schools who teach structures and seismic design. For this reason the text and graphics are focused on those aspects of seismic design that are important for the architect to know.


National Earthquake Resilience

National Earthquake Resilience

Author: National Research Council

Publisher: National Academies Press

Published: 2011-09-09

Total Pages: 197

ISBN-13: 0309186773

DOWNLOAD EBOOK

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.


Measuring Vulnerability to Natural Hazards

Measuring Vulnerability to Natural Hazards

Author: Birkmann

Publisher: The Energy and Resources Institute (TERI)

Published: 2007-01-01

Total Pages: 582

ISBN-13: 9788179931226

DOWNLOAD EBOOK

Measuring Vulnerability to Natural Hazards presents a broad range of current approaches to measuring vulnerability. It provides a comprehensive overview of different concepts at the global, regional, national, and local levels, and explores various schools of thought. More than 40 distinguished academics and practitioners analyse quantitative and qualitative approaches, and examine their strengths and limitations. This book contains concrete experiences and examples from Africa, Asia, the Americas and Europe to illustrate the theoretical analyses.The authors provide answers to some of the key questions on how to measure vulnerability and they draw attention to issues with insufficient coverage, such as the environmental and institutional dimensions of vulnerability and methods to combine different methodologies.This book is a unique compilation of state-of-the-art vulnerability assessment and is essential reading for academics, students, policy makers, practitioners, and anybody else interested in understanding the fundamentals of measuring vulnerability. It is a critical review that provides important conclusions which can serve as an orientation for future research towards more disaster resilient communities.