Advances in plant cell molecular biology have considerably increased our understanding of pollen-pistil barriers, particularly those operated by incompatibility mechanisms, and, at the same time, demonstrated the complexity and diversity of rejection systems once considered to be relatively simple. This book reviews the impressive knowledge acquired in the last century on the biology, particularly the inheritance and population genetics of self-incompatibility, and presents the new approaches to the study of the structure, function and evolution of incompatibility alleles and the analysis of cell-cell recognition and pollen rejection. The different methods now available for transforming the breeding behaviour of higher plants are also discussed.
Great progress has been made in our understanding of pollen-pistil interactions and self-incompatibility (SI) in flowering plants in the last few decades. This book covers a broad spectrum of research into SI, with accounts by internationally renowned scientists. It comprises two sections: Evolution and Population Genetics of SI, Molecular and Cell Biology of SI Systems. The reader will gain an insight into the diversity and complexity of these polymorphic cell-cell recognition and rejection systems. Heteromorphic and homomorphic SI systems and our current understanding of the evolution and phylogeny of these systems, based on the most recent molecular sequence data, are covered. Further, the book presents major advances in our knowledge of the pistil and pollen S-determinants and other unlinked components involved in SI, as well as the apparently diverse cellular regulatory mechanisms utilised to ensure inhibition of “self” pollen.
In 1960 Sir Frank Macfarlane Burnet received the Noble Prize in Physiology and Medicine. He titled his Nobel Lecture “Immunological Recognition of Self” emphasizing the central argument of immunological tolerance in “How does the vertebrate organism recognize self from nonself in this the immunological sense—and how did the capacity evolve.” The concept of self is linked to the concept of biological self identity. All organisms, from bacteria to higher animals, possess recognition systems to defend themselves from nonself. Even in the context of the limited number of metazoan phyla that have been studied in detail, we can now describe many of the alternative mechanism of immune recognition that have emerged at varying points in phylogeny. Two different arms—the innate and adaptive immune system—have emerged at different moments in evolution, and they are conceptually different. The ultimate goals of immune biology include reconstructing the molecular networks underlying immune processes.
This book contains the proceedings of the International Symposium on the Mechanisms of Sexual Reproduction in Animals and Plants, where many plant and animal reproductive biologists gathered to discuss their recent progress in investigating the shared mechanisms and factors involved in sexual reproduction. This now is the first book that reviews recent progress in almost all fields of plant and animal fertilization. It was recently reported that the self-sterile mechanism of a hermaphroditic marine invertebrate (ascidian) is very similar to the self-incompatibility system in flowering plants. It was also found that a male factor expressed in the sperm cells of flowering plants is involved in gamete fusion not only of plants but also of animals and parasites. These discoveries have led to the consideration that the core mechanisms or factors involved in sexual reproduction may be shared by animals, plants and unicellular organisms. This valuable book is highly useful for reproductive biologists as well as for biological scientists outside this field in understanding the current progress of reproductive biology.
The author offers an overview of pollen biology and biotechnology for students and researchers in areas such as reproductive biology, biotechnology, aeropalynology, plant breeding, horticulture, and forestry. Citing more than 1,500 references to pollen research, the text covers topics including advances in understanding pollen tube growth, the use
Successful reproduction is the basis not only for the stability of the species in their natural habitat but also for productivity of our crop plants. Therefore, knowledge on reproductive ecology of wild and cultivated plants is important for effective management of our dwindling biodiversity and for the sustainability and improvement of the yield in crop species. Conservation and management of our plant diversity is going to be a major challenge in the coming decades, particularly in the tropical countries which are rich in biodiversity. Reproductive failure is the main driver for pushing a large number of tropical species to vulnerable category. Available data on reproductive ecology on tropical species is very limited and there is an urgent need to initiate research on these lines. A major limitation for the beginners to take up research is the absence of simple concise work manuals that provide step-wise procedures to study all aspects of reproductive ecology. The Manual fills this void. Over 60 protocols described in the manual cover the whole spectrum of reproductive ecology - study sites and species, phenology, floral morphology and sexuality, pollen and pistil biology, pollination ecology, breeding system, seed biology, seed dispersal and seedling recruitment. Each chapter gives a concise conceptual account of the topic before describing the protocols. The Manual caters to researchers, teachers and students who are interested in any aspect of reproductive ecology of flowering plants -- botanists, ecologists, agri-horticulturists, foresters, entomologists, plant breeders and conservation biologists.
"An indispensable source for researchers, teachers, and graduate and postgraduate students interested in mutation breeding and genetic engineering. It introduces readers to contemporary knowledge and state-of-the-art technologies in the field of mutation breeding, including fundamental mechanisms and applications. . . . It will provide new directions, and avenues for enhancement of food security and food quality by using the latest techniques for the 'mutation as breeding' approach." - From Prof. Jameel M. Al-Khayri, King Faisal University, Saudi Arabia This comprehensive three-volume set book aims to help combat the challenge of providing enough food for the world by the use of advanced genetic processes to improve crop production, both in quantity and quality. Volume 1: Mutagenesis and Crop Improvement discusses mutagenesis, cytotoxicity, and crop improvement, covering the processes, mutagenic effectiveness, and mechanisms. The volume emphasizes the improvement of agronomic characteristics by manipulating the genotype of plant species, resulting in increased productivity. Volume 2: Revolutionizing Plant Biology covers the use of mutagenesis and biotechnology to explore the variability of mutant genes for crop improvement. The chapters deal with in-vitro mutagenesis to exploit the somaclonal variations induced in cell culture and highlight the importance of in-vitro mutagenesis in inducing salt resistance, heat resistance, and drought resistance. Volume 3: Mechanisms for Genetic Manipulation of Plants and Plant Mutants reviews the genetic engineering techniques used to mutate genes and to incorporate them into different plant species of cereals, pulses, vegetables, and fruits. Also discussed are the principles of genetic engineering by which desired genes can be transferred from plants to animals to microorganisms and vice versa.
The Genetics and Genomics of the Brassicaceae provides a review of this important family (commonly termed the mustard family, or Cruciferae). The family contains several cultivated species, including radish, rocket, watercress, wasabi and horseradish, in addition to the vegetable and oil crops of the Brassica genus. There are numerous further species with great potential for exploitation in 21st century agriculture, particularly as sources of bioactive chemicals. These opportunities are reviewed, in the context of the Brassicaceae in agriculture. More detailed descriptions are provided of the genetics of the cultivated Brassica crops, including both the species producing most of the brassica vegetable crops (B. rapa and B. oleracea) and the principal species producing oilseed crops (B. napus and B. juncea). The Brassicaceae also include important “model” plant species. Most prominent is Arabidopsis thaliana, the first plant species to have its genome sequenced. Natural genetic variation is reviewed for A. thaliana, as are the genetics of the closely related A. lyrata and of the genus Capsella. Self incompatibility is widespread in the Brassicaceae, and this subject is reviewed. Interest arising from both the commercial value of crop species of the Brassicaceae and the importance of Arabidopsis thaliana as a model species, has led to the development of numerous resources to support research. These are reviewed, including germplasm and genomic library resources, and resources for reverse genetics, metabolomics, bioinformatics and transformation. Molecular studies of the genomes of species of the Brassicaceae revealed extensive genome duplication, indicative of multiple polyploidy events during evolution. In some species, such as Brassica napus, there is evidence of multiple rounds of polyploidy during its relatively recent evolution, thus the Brassicaceae represent an excellent model system for the study of the impacts of polyploidy and the subsequent process of diploidisation, whereby the genome stabilises. Sequence-level characterization of the genomes of Arabidopsis thaliana and Brassica rapa are presented, along with summaries of comparative studies conducted at both linkage map and sequence level, and analysis of the structural and functional evolution of resynthesised polyploids, along with a description of the phylogeny and karyotype evolution of the Brassicaceae. Finally, some perspectives of the editors are presented. These focus upon the Brassicaceae species as models for studying genome evolution following polyploidy, the impact of advances in genome sequencing technology, prospects for future transcriptome analysis and upcoming model systems.
This book is designed to introduce the basics of different aspects of the biology of reproduction in a concise and coherent manner. The book aims to equip students with the fundamentals of the biology of reproduction and also update them with the most recent advances in the field of reproduction. The book has been organized into 16 chapters that introduce and explain different aspects in a stimulating manner. Each chapter is supplemented with a summary and relevant illustrations. A glossary has been added to help the students to understand some important scientific terms. The book offers comprehensive coverage of the important topics including: Flower structure and development Development and structure of male and female gametophytes Pollination biology, fertilization and self-incompatibility Endosperm, embryo and polyembryony Apomixis and seed biology A separate topic on experimental plant reproductive biology (experimental embryology) has been provided, which includes basics of cell, tissue and organ culture, anther culture, pollen culture, flower, ovary, ovule culture, embryo culture, somatic embryogenesis, synthetic seeds, protoplast culture and other aspects of plant biotechnology. The book aims to cater to the needs of the advanced undergraduate and post-graduate students in Botany, Forestry, Agriculture and related fields.
This is the first book on Rosaceae genomics. It covers progress in recent genomic research among the Rosaceae, grounding this firmly in the historical context of genetic studies and in the application of genomics technologies for crop development.