This book outlines three emergent disciplines, which are now poised to engineer a paradigm shift from hypothesis- to data-driven research: theoretical immunology, immunoinformatics, and Artificial Immune Systems. It details how these disciplines will enable new understanding to emerge from the analysis of complex datasets. Coverage shows how these three are set to transform immunological science and the future of health care.
This book outlines three emergent disciplines, which are now poised to engineer a paradigm shift from hypothesis- to data-driven research: theoretical immunology, immunoinformatics, and Artificial Immune Systems. It details how these disciplines will enable new understanding to emerge from the analysis of complex datasets. Coverage shows how these three are set to transform immunological science and the future of health care.
This book covers a wide range of diverse immunoinformatics research topics, involving tools and databases of potential epitope prediction, HLA gene analysis, MHC characterizing, in silico vaccine design, mathematical modeling of host-pathogen interactions, and network analysis of immune system data. In that way, this fully updated volume explores the enormous value of computational tools and models in immunology research. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of key insights and detailed implementation advice to encourage successful results in the lab. Authoritative and practical, Immunoinformatics, Third Edition serves as an ideal guide for scientists working at the intersection of bioinformatics, mathematical modelling, and statistics for the study of immune systems biology.
Computational Immunology: Models and Tools encompasses the methodological framework and application of cutting-edge tools and techniques to study immunological processes at a systems level, along with the concept of multi-scale modeling. The book's emphasis is on selected cases studies and application of the most updated technologies in computational modeling, discussing topics such as computational modeling and its usage in immunological research, bioinformatics infrastructure, ODE based modeling, agent based modeling, and high performance computing, data analytics, and multiscale modeling. There are also modeling exercises using recent tools and models which lead the readers to a thorough comprehension and applicability. The book is a valuable resource for immunologists, computational biologists, bioinformaticians, biotechnologists, and computer scientists, as well as all those who wish to broaden their knowledge in systems modeling. - Offers case studies with different levels of complexity - Provides a detailed view on cutting-edge tools for modeling that are useful to experimentalists with limited computational skills - Explores the usage of simulation for hypothesis generation, helping the reader to understand the most valuable points on experimental setting
In contrast to existing books on immunoinformatics, this volume presents a cross-section of immunoinformatics research. The contributions highlight the interdisciplinary nature of the field and how collaborative efforts among bioinformaticians and bench scientists result in innovative strategies for understanding the immune system. Immunoinformatics is ideal for scientists and students in immunology, bioinformatics, microbiology, and many other disciplines.
Systems biology can now be considered an established and fundamental field in life sciences. It has moved from the identification of molecular 'parts lists' for living organisms towards synthesising information from different 'omics'-based approaches to generate and test new hypotheses about how biological systems work. In In Silico Systems Biology: Methods and Protocols, expert researchers in the field detail a practical set of chapters based often on actual materials used and develop for face-to-face training with examples and case studies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step workflows, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, In Silico Systems Biology: Methods and Protocols seeks to aid scientists in the further study of network biology and mathematical models of biological systems.
This volume will address an important emergent area within the field of immunomics: the discovery of antigens and adjuvants within the context of reverse vaccinology. Conventional approaches to vaccine design and development requires pathogens to be cultivated in the laboratory and the immunogenic molecules within them to be identifiable. Conventional vaccinology is no longer universally successful, particularly for recalcitrant pathogens. By using genomic information we can study vaccine development in silico: 'reverse vaccinology', can identify candidate subunits vaccines by identifying antigenic proteins and by using equally rational approaches to identify novel immune response-enhancing adjuvants.
This collection seeks to elucidate the practical methods necessary for successful adjuvant development, with a particular focus on the synthesis, formulation, manufacturing, and characterization aspects involved. Beginning with an overview and a case study, the book then delves into in silico design, chemical synthesis, biosynthesis, and/or purification from natural raw materials of specific adjuvant molecules, adjuvant formulation approaches, the analytical characterization of adjuvant formulations and adjuvant-containing vaccines, as well as the biological characterization of vaccine adjuvant activity, including in vitro and in vivo approaches, to measure innate and adaptive immune responses. Written in the highly successful Methods in Molecular Biology format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and authoritative, Vaccine Adjuvants: Methods and Protocols aims to facilitate vaccine adjuvant product development efforts, making them more accessible, manufacturable, and better characterized.
Are we satisfied with the rate of drug development? Are we happy with the drugs that come to market? Are we getting our money s worth in spending for basic biomedical research? In Translational Systems Biology, Drs. Yoram Vodovotz and Gary An address these questions by providing a foundational description the barriers facing biomedical research today and the immediate future, and how these barriers could be overcome through the adoption of a robust and scalable approach that will form the underpinning of biomedical research for the future. By using a combination of essays providing the intellectual basis of the Translational Dilemma and reports of examples in the study of inflammation, the content of Translational Systems Biology will remain relevant as technology and knowledge advances bring broad translational applicability to other diseases. Translational systems biology is an integrated, multi-scale, evidence-based approach that combines laboratory, clinical and computational methods with an explicit goal of developing effective means of control of biological processes for improving human health and rapid clinical application. This comprehensive approach to date has been utilized for in silico studies of sepsis, trauma, hemorrhage, and traumatic brain injury, acute liver failure, wound healing, and inflammation. Provides an explicit, reasoned, and systematic approach to dealing with the challenges of translational science across disciplines Establishes the case for including computational modeling at all stages of biomedical research and healthcare delivery, from early pre-clinical studies to long-term care, by clearly delineating efficiency and costs saving important to business investment Guides readers on how to communicate across domains and disciplines, particularly between biologists and computational researchers, to effectively develop multi- and trans-disciplinary research teams "
This detailed new edition provides complete and easy access to a variety of antibody engineering techniques. The volume explores topics such as the generation of native, synthetic, or immune antibody libraries, the selection of lead candidates via the different powerful and innovative display technologies, Fc engineering, as well as their production, characterization, and optimization of antibodies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Antibody Engineering: Methods and Protocols, Third Edition presents the reader with an extensive toolbox to create the powerful molecules of tomorrow.