This text outlines the problems commonly encountered during infrastructure constructions on soft and subsiding ground in lowland environments, and their solutions in terms of soil/ground improvement techniques.
This book deals with the behaviour of soft ground improved by some of the more common methods, including the installation of prefabricated vertical drains (PVDs), or the installation of soil-cement columns formed by deep mixing, or the preloading of soft ground by application of a vacuum pressure in addition to, or instead of, a surcharge loading. In particular, it describes the theories and the numerical modelling techniques that may be applied to these soft ground improvement schemes to estimate the immediate and time-dependent mechanical response of the in situ soil. Particular emphasis has been placed on methods that reliably predict ground deformations associated with ground improvement techniques. The book commences with a brief description of the various ground improvement methods and then describes general techniques for modelling the behaviour of soft clay subsoils by the finite element method, as well as details of the methods for modelling soft soils improved by the installation of PVDs. It also includes chapters describing the theory of vacuum consolidation and methods for calculating vacuum pressure-induced ground deformation, as well as a theory which can be used to predict the response of soft ground improved by the installation of soil-cement columns. An important distinguishing feature of this book is the routine use of comparisons of predictions of the proposed models with the results of laboratory studies, and particularly field case studies, in order to validate the proposed methods of analysis. The field case histories are from soft soil sites at various locations around the world. The book is directed towards students of geotechnical engineering as well as geotechnical practitioners. In the main it provides complete derivations of most of the important theoretical results, as the intention was to write a book that could be used as both a teaching text and a reference work for students and practitioners. Audience: The book is intended for geotechnical practitioners as well as for students.
Vibro compaction and vibro stone columns are the two dynamic methods of soil improvement most commonly used worldwide. These methods have been developed over almost eighty years and are now of unrivalled importance as modern foundation measures. Vibro compaction works on granular soils by densification, and vibro stone columns are used to displace and reinforce fine-grained and cohesive soils by introducing inert material. This second edition includes also a chapter on vibro concrete columns constructed with almost identical depth vibrators. These small diameter concrete piles are increasingly used as ground improvement methods for moderately loaded large spread foundations, although the original soil characteristics are only marginally improved. This practical guide for professional geotechnical engineers and graduate students systematically covers the theoretical basis and design principles behind the methods, the equipment used during their execution, and state of the art procedures for quality assurance and data acquisition. All the chapters are updated in line with recent developments and improvements in the methods and equipment. Fresh case studies from around the world illustrate the wide range of possible applications. The book concludes with variations to methods, evaluates the economic and environmental benefits of the methods, and gives contractual guidance. The Open Access version of this book, available at http://www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license
Embankment construction projects on very soft soil often give rise to serious problems. This volume on geotechnics and soft soil engineering therefore treats all phases of the design and construction process exhaustively, from the first investigation step to the monitoring of constructed work. The book presents the development concepts necessary for the project stages and discusses in great detail construction methods, displacement estimations, stability analyses, monitoring, and various other aspects involved. Extensive attention is furthermore paid to the application of geosynthetics as a tool to improve the stability of soft soils and embankments. Including various tables and practical data for many geographical areas in the world, this reference volume is essential reading for engineers and researchers in geotechnical engineering, construction, and related disciplines.
When finding another location, redesigning a structure, or removing troublesome ground at a project site are not practical options, prevailing ground conditions must be addressed. Improving the ground modifying its existing physical properties to enable effective, economic, and safe construction to achieve appropriate engineering performance is an
This book results from the 7th ICPMG meeting in Zurich 2010 and covers a broad range of aspects of physical modelling in geotechnics, linking across to other modelling techniques to consider the entire spectrum required in providing innovative geotechnical engineering solutions. Topics presented at the conference: Soil – Structure – Interaction; Natural Hazards; Earthquake Engineering: Soft Soil Engineering; New Geotechnical Physical; Modelling Facilities; Advanced Experimental Techniques; Comparisons between Physical and Numerical Modelling Specific Topics: Offshore Engineering; Ground Improvement and Foundations; Tunnelling, Excavations and Retaining Structures; Dams and slopes; Process Modelling; Goenvironmental Modelling; Education
The book reviews recent developments and research results on excavations and foundations found in and on soft soil deposits. It gives an overview of the material properties of soft soils and offers new foundation improvement techniques in road and railways. It also examines different types of foundations and stabilization methods. The book will serve both practicing and research engineers in the field of geotechnical engineering.
The 16th ICSMGE responds to the needs of the engineering and construction community, promoting dialog and exchange between academia and practice in various aspects of soil mechanics and geotechnical engineering. This is reflected in the central theme of the conference 'Geotechnology in Harmony with the Global Environment'. The proceedings of the conference are of great interest for geo-engineers and researchers in soil mechanics and geotechnical engineering. Volume 1 contains 5 plenary session lectures, the Terzaghi Oration, Heritage Lecture, and 3 papers presented in the major project session. Volumes 2, 3, and 4 contain papers with the following topics: Soil mechanics in general; Infrastructure and mobility; Environmental issues of geotechnical engineering; Enhancing natural disaster reduction systems; Professional practice and education. Volume 5 contains the report of practitioner/academic forum, 20 general reports, a summary of the sessions and workshops held during the conference.
The increasing need to redevelop land in urban areas has led to major development in the field of ground improvement, a process that is continuing and expanding. Vibratory deep compaction and grouting techniques have also been increasingly applied to solving the problems of urban development, whether from tunnelling, excavation, building renovation or bearing capacity improvement and settlement reduction. The second edition of this well established book continues to provide an international overview of the major techniques in use. Comprehensively updated in line with recent developments, each chapter is written by an acknowledged expert in the field. Ground Improvements is written for geotechnical and civil engineers, and for contractors working in grouting, ground improvement, piling and environmental engineering.
With increasing urbanization and development of society, advancement in geotechnical technologies is essential to the construction of infrastructures. Geotechnical Investigation is the first step of applying scientific methods and engineering principles to obtain solutions to civil engineering problems. The studies presented in this volume deal with the attempts made by scholars and engineers to address the latest development in geotechnical engineering such as characterization of geomaterials, slope stability, tunneling, mitigation of geohazards, and some other geotechnical issues that are quite relevant in today's world. This volume is based on contributions to the the GeoChina International Conference on Civil & Transportation Infrastructures: From Engineering to Smart & Green Life Cycle Solutions -- Nanchang, China, 2021.