This technical report focuses on Koga, in Ethiopia, and describes the process of developing, designing, piloting and evaluating potential solutions to increase water productivity sustainably, which is the third objective of component 4 of the project on WaPOR (Using Remote Sensing in support of solutions to reduce agricultural water productivity gaps). As irrigated areas expand, more attention must be paid to on-farm water management so as to allow for optimal use and distribution of water resources. Using WaPOR data, that is, remote-sensing based water productivity parameters, this report characterises the status of water use and productivity in the Koga irrigation scheme. It also uses the data to measure the changes occuring after the implementation of low-cost tools and irrigation practices so as to: increase yield and to reduce the water consumed or applied during the irrigation season.
An in-depth review of sustainable concepts in water resources management under climate change Climate change continues to intensify existing pressures in water resources management, such as rapid population growth, land use changes, pollution, damming of rivers, and many others. Securing a reliable water supply—critical for achieving Sustainable Development Goals (SDGs)—requires understanding of the relation between finite water resources, climate variability/change, and various elements of sustainability. Water, Climate Change, and Sustainability is a timely and in-depth examination of the concept of sustainability as it relates to water resources management in the context of climate change risks. Featuring contributions by global authors, this edited volume is organized into three sections: Sustainability Concepts; Sustainability Approaches, Tools, and Techniques; and Sustainability in Practice. Detailed chapters describe the linkage between water and sustainable development, highlight the development and use of new measuring and reporting methods, and discuss the implementation of sustainability concepts in various water use sectors. Topics include localizing and mainstreaming global water sustainability initiatives, resilient water infrastructure for poverty reduction, urban water security for sustainable cities, climate actions and challenges for sustainable ecosystem services, and more. This important resource: Reviews contemporary scientific research and practical applications in the areas of water, climate change and sustainability in different regions of the world Discusses future directions of research and practices in relation to expected patterns of climate changes Covers a wide range of concepts, theories, and perspectives of sustainable development of water resources Features case studies of field and modelling techniques for analyzing water resources and evaluating vulnerability, security, and associated risks Discusses practical applications of water resources in contexts such as food security, global health, clean energy, and climate action Water, Climate Change, and Sustainability is an invaluable resource for policy makers water managers, researchers, and other professionals in the field, and an ideal text for graduate students in hydrogeology, climate change, geophysics, geochemistry, geography, water resources, and environmental science.
This book, which contains 14 chapters, covers all aspects of rainfed agriculture, starting with its potential, current status, rainwater harvesting and supplementary irrigation, to policies, approaches, institutions for upscaling, and impacts of integrated water management programmes in rainfed areas.
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).
This catalogue aims to improve the dissemination and outreach of FAO’s knowledge products and overall publishing programme. By providing information on its key publications in every area of FAO’s work, and catering to a range of audiences, it thereby contributes to all organizational outcomes. From statistical analysis to specialized manuals to children’s books, FAO publications cater to a diverse range of audiences. This catalogue presents a selection of FAO’s main publications, produced in 2021 or earlier, ranging from its global reports and general interest publications to numerous specialized titles. In addition to the major themes of agriculture, forestry and fisheries, it also includes thematic sections on climate change, economic and social development, and food safety and nutrition
Irrigation development has been identified as a means to stimulate economic growth and rural development in Ethiopia. However, little attempt has been made to quantify the contribution of irrigation to national income. Using data from selected irrigation schemes, representing small, medium and large-scale schemes of modern or traditional typologies; the present coverage and planned growth of irrigation, actual and expected contributions of irrigation to the national economy were quantified following the approach of adjusted gross margin analysis. Our results show that irrigation yields 219.7% higher income compared to the rainfed system while its current and future contribution to agricultural GDP is estimated to be about 5.7 and 12% although irrigation covers about 5 and 9% of the total cultivated land area, respectively.