Immunobiology of the Macrophage presents an account of the state of knowledge of the immunobiology of the macrophage. The book's contributors—immunologists of diverse scientific and geographic backgrounds—have been encouraged to give personal accounts of developments in their special fields of interest as well as critical surveys of the backgrounds leading to these developments. The book begins with a study on the functions of macrophages in the initiation and regulation of antibody responses in vitro. This is followed by separate chapters on topics such as the role of macrophages in making antigen more immunogenic and less tolerogenic; functional distinctions between macrophages at different sites; and the role of the macrophage in antigen recognition by T lymphocytes. Subsequent chapters examine interactions between macrophages and lymphocytes in the production of interferon and other mediators of cellular immunity; macrophage cell lines and their uses in immunobiology; and cytotoxic macrophages in allograft rejection.
The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.
Macrophages have unique and diverse functions necessary for survival. And, in humans (and other species), they are the most abundant leukocytes in tissues. The Innate functions of macrophages that are best known are their unusual ability to either “Kill” or “Repair”. Since killing is a destructive process and repair is a constructive process, it was stupefying how one cell could exhibit these 2 polar – opposite functions. However, in the late 1980’s, it was shown that macrophages have a unique ability to enzymatically metabolize Arginine to Nitric Oxide (NO, a gaseous non – specific killer molecule) or to Ornithine (a precursor of polyamines and collagen for repair). The dual Arginine metabolic capacity of macrophages provided a functional explanation for their ability to kill or repair. Macrophages predominantly producing NO are called M1 and those producing Ornithine are called M2. M1 and M2 – dominant responses occur in lower vertebrates, and in T cell deficient vertebrates being directly driven by Damage and Pathogen Associated Molecular Patterns (DAMP and PAMP). Thus, M1 and M2 are Innate responses that protect the host without Adaptive Immunity. In turn, M1/M2 is supplanting previous models in which T cells were necessary to “activate” or “alternatively activate” macrophages (the Th1/Th2 paradigm). M1 and M2 macrophages were named such because of the additional key findings that these macrophages stimulate Th1 and Th2 – like responses, respectively. So, in addition to their unique ability to kill or repair, macrophages also govern Adaptive Immunity. All of the foregoing would be less important if M1 or M2 – dominant responses were not observed in disease. But, they are. The best example to date is the predominance of M2 macrophages in human tumors where they act like wound repair macrophages and actively promote growth. More generally, humans have become M2 – dominant because sanitation, antibiotics and vaccines have lessened M1 responses. And, M2 dominance seems the cause of ever - increasing allergies in developed countries. Obesity represents a new and different circumstance. Surfeit energy (e.g., lipoproteins) causes monocytes to become M1 dominant in the vessel walls causing plaques. Because M1 or M2 dominant responses are clearly causative in many modern diseases, there is great potential in developing the means to selectively stimulate (or inhibit) either M1 or M2 responses to kill or repair, or to stimulate Th1 or Th2 responses, depending on the circumstance. The contributions here are meant to describe diseases of M1 or M2 dominance, and promising new methodologies to modulate the fungible metabolic machinery of macrophages for better health.
The Macrophage, second edition provides a unique, comprehensive review of the current scientific knowledge of the multifaceted role of this important and intriguing cell in health and disease. In 16 chapters, written by experts in the field, it covers the basic biology and diverse functions of macrophages in specific diseases and the complex interactions between macrophages and other cells. Ranging from their role in the defence against pathogens, their role as hosts for pathogens (including HIV), their complex roles in diseases such as arthritis and cancer, and their potential for use in novel gene therapy approaches to disease treatment, the book gives an up to the minute account of active macrophage research.
The mononuclear phagocyte system (MPS) comprises dendritic cells (DCs), monocytes and macrophages (MØs) that together play crucial roles in tissue immunity and homeostasis, but also contribute to a broad spectrum of pathologies. They are thus attractive therapeutic targets for immune therapy. However, the distinction between DCs, monocytes and MØ subpopulations has been a matter of controversy and the current nomenclature has been a confounding factor. DCs are remarkably heterogeneous and consist of multiple subsets traditionally defined by their expression of various surface markers. While markers are important to define various populations of the MPS, they do not specifically define the intrinsic nature of a cell population and do not always segregate a bona fide cell type of relative homogeneity. Markers are redundant, or simply define distinct activation states within one subset rather than independent subpopulations. One example are the steady-state CD11b+ DCs which are often not distinguished from monocytes, monocyte-derived cells, and macrophages due to their overlapping phenotype. Lastly, monocyte fate during inflammation results in cells bearing the phenotypic and functional features of both DCs and MØs significantly adding to the confusion. In fact, depending on the context of the study and the focus of the laboratory, a monocyte-derived cell will be either be called "monocyte-derived DCs" or "macrophages". Because the names we give to cells are often associated with a functional connotation, this is much more than simple semantics. The "name" we give to a population fundamentally changes the perception of its biology and can impact on research design and interpretation. Recent evidence in the ontogeny and transcriptional regulation of DCs and MØs, combined with the identification of DC- and MØ-specific markers has dramatically changed our understanding of their interrelationship in the steady state and inflammation. In steady state, DCs are constantly replaced by circulating blood precursors that arise from committed progenitors in the bone marrow. Similarly, some MØ populations are also constantly replaced by circulating blood monocytes. However, others tissue MØs are derived from embryonic precursors, are seeded before birth and maintain themselves in adults by self-renewal. In inflammation, such differentiation pathways are fundamentally changed and unique monocyte-derived inflammatory cells are generated. Current DC, monocyte and MØ nomenclature does not take into account these new developments and as a consequence is quite confusing. We believe that the field is in need of a fresh view on this topic as well as an upfront debate on DC and MØ nomenclature. Our aim is to bring expert junior and senior scientists to revisit this topic in light of these recent developments. This Research Topic will cover all aspects of DC, monocyte and MØ biology including development, transcriptional regulation, functional specializations, in lymphoid and non-lymphoid tissues, and in both human and mouse models. Given the central position of DCs, monocytes and MØs in tissue homeostasis, immunity and disease, this topic should be of interest to a large spectrum of the biomedical community.
This authoritative handbook covers all aspects of immunosenescence, with contributions from experts in the research and clinical areas. It examines methods and models for studying immunosenescence; genetics; mechanisms including receptors and signal transduction; clinical relevance in disease states including infections, autoimmunity, cancer, metabolic syndrome, neurodegenerative diseases, frailty and osteoporosis; and much more.
Macrophage Regulation of Immunity contains the proceedings of a conference held in Augusta, Michigan, on March 12-14, 1979. The papers examine the role of macrophages in the regulation of cellular immune reactions. They highlight the interaction between macrophages and T cells, along with immune response gene control and macrophage secretion of a number of lymphostimulatory molecules. Organized into six sections encompassing 35 chapters, this volume begins with an overview of antigen handling and presentation, immune response gene control, antigen-presenting cells, and factors affecting lymphocyte-macrophage interactions. It then discusses genetic control of T cell-macrophage interaction in helper cell induction in vitro; mechanisms underlying the interaction of guinea pig T lymphocytes with antigen-pulsed macrophages; and secretion of arachidonic acid oxygenation products by mononuclear phagocytes and their possible role as modulators of lymphocyte function. The book also covers regulation of intracellular killing by extracellular stimulation of the monocyte membrane, and adjuvant activation of macrophage functions. Students and scientists will find this book extremely helpful.
Janis Kuby’s groundbreaking introduction to immunology was the first textbook for the course actually written to be a textbook. Like no other text, it combined an experimental emphasis with extensive pedagogical features to help students grasp basic concepts. Now in a thoroughly updated new edition, Kuby Immunology remains the only undergraduate introduction to immunology written by teachers of the course. In the Kuby tradition, authors Jenni Punt, Sharon Stranford, Patricia Jones, and Judy Owen present the most current topics in an experimental context, conveying the excitement of scientific discovery, and highlight important advances, but do so with the focus on the big picture of the study of immune response, enhanced by unsurpassed pedagogical support for the first-time learner. Punt, Stranford, Jones, and Owen bring an enormous range of teaching and research experiences to the text, as well as a dedication to continue the experiment-based, pedagogical-driven approach of Janis Kuby. For this edition, they have worked chapter by chapter to streamline the coverage, to address topics that students have the most trouble grasping, and to continually remind students where the topic at hand fits in the study of immunology as a whole.
Current Protocols in Immunology is a three-volume looseleaf manual that provides comprehensive coverage of immunological methods from classic to the most cutting edge, including antibody detection and preparation, assays for functional activities of mouse and human cells involved in immune responses, assays for cytokines and their receptors, isolation and analysis of proteins and peptides, biochemistry of cell activation, molecular immunology, and animal models of autoimmune and inflammatory diseases. Carefully edited, step-by-step protocols replete with material lists, expert commentaries, and safety and troubleshooting tips ensure that you can duplicate the experimental results in your own laboratory. Bimonthly updates, which are filed into the looseleaf, keep the set current with the latest developments in immunology methods. The initial purchase includes one year of updates and then subscribers may renew their annual subscriptions. Current Protocols publishes a family of laboratory manuals for bioscientists, including Molecular Biology, Human Genetics, Protein Science, Cytometry, Cell Biology, Neuroscience, Pharmacology, and Toxicology.